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Abstract. Defining a location parameter as a generalization of the median, a robust

test is proposed for (a) the nonparametric Behrens-Fisher problem, where the underlying

distributions have possibly have different scales and could be skewed, and (b) the gener-

alized Behrens-Fisher problem, where the distributions may even have different shapes.

We propose to bootstrap a signed rank statistic based on differences of sample values,

and derive rigorous bootstrap central limit theorems for its probabilistic justification, al-

lowing for the so-called m-out-of-n bootstrap. The location parameter of interest is the

pseudo-median of the distribution of the difference between a control measurement and an

observation from the treatment group. It reduces to (a) the shift in the two sample loca-

tion model and (b) the difference between the centers of symmetry in the nonparametric

Behrens-Fisher model, under the additional assumption that the distributions are sym-

metric. Due to its importance for applications, we also extend our results to an ANOVA

design where each treatment is compared with the control group. Finally, we compare our

test with competitors on the basis of theory as well as simulation studies. It turns out that

our approach yields a substantial improvement for distributions close to the generalized

extreme value type, which makes it attractive for applications in engineering as well as

finance. Several heteroscedastic data sets from electrical engineering, astro physics, energy

research, analytical chemistry and psychology are used to illustrate our solution.

Keywords: Bootstrap, Central limit theorem, Generalized extreme value distribution,

Heteroscedasticity, Signed-rank statistics, U -statistics.

1. Introduction

The classical two sample and multi-sample location problems assume (i) normality, (ii)

homogeneity of error variances and (iii) symmetry of the distributions. Those assumptions

are not met in many applications, which motivated our work. Particularly, the presence

of heteroscedasticity, asymmetry and possibly different shapes of the distributions causes

severe statistical problems. Areas of applications where such issues arise and which we

discuss in this article to some extent cover various fields of natural sciences, electrical

engineering, photovoltaics as well as psychology and human sciences. The aim of the present

article is to propose a new solution to the problem, elaborate on a related bootstrap

rank test, provide the required theoretical results, investigate the statistical properties

by simulations as well as discuss carefully the application to various real data from the

mentioned fields.
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The nonparametric Behrens-Fisher framework allows for non-normality and heteroscedas-

ticity, but the rank-based methods studied in Fligner & Policello (1981) and Rust & Fligner

(1984) for the two-sample and multi-sample settings, respectively, still assume symmetric

distributions. Nevertheless, often of the distributions arising in bioavailability studies, engi-

neering and psychology are skewed (cf. Chow & Liu 1992, Micceri 1989, Nair 1984, Wilcox

1987, 1995). Similarly, symmetry can rarely be assumed for financial and economic data.

In particular, it is often argued that prices, inflation, returns and other economic measures

respond less to positive news than to negative news. In the economic literature, this is usu-

ally referred to as price stickiness, asymmetric responses or the ratchet effect. For further

details and references, see Abdus et al. (2003). Such challenging phenomena also arise in

photovoltaics, cf. Herrmann & Steland (2010) and Steland & Zähle (2009). In Section 6,

we will analyze a data set which is hard to treat with existing methodologies. In psycho-

logical experiments a treatment often changes both location and scale of the distribution

of the observations, and sometimes even the distributional shape, see Zumbo (2002) and

Zumbo & Koh (2005), amongst others. For examples from biometry see Podgor & Gast-

wirth (1964) and the references given therein. Finally, Boos & Brownie (1991, 2004) and

Lamb et al. (1996) show that in toxicological studies it is common that a treatment affects

both location and variability.

These examples demonstrate that the Behrens-Fisher setting is important, both for

observational and experimental studies. In real experiments such as pilot studies in sciences

and engineering, one often has to base inference on small sample sizes and deals with

scientific problems which are not yet well understood. Sometimes, there is simply not

enough knowledge about the problem to formulate parametric distributional models or

specific alternative models which would allow us to use likelihood-based methods or locally

optimal rank tests. In other cases, large samples are not available to conduct such analyzes,

e.g. due to cost constraints. For these reasons, investigators frequently complain about

classic procedures requiring strong assumptions which can neither be checked nor inferred

with available data and theory. Then it is advisable to rely on rank tests using Wilcoxon

scores to simultaneously ensure simplicity, robustness, accuracy of type I error, and high

power for a wide class of alternative distributions.

Thus, both from a methodological and an applied point of view, there is need for ap-

propriate statistical methods to test for a difference in the presence of asymmetric and
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heteroscedastic distributions. The present article contributes a novel solution for that clas-

sic statistical problem. As we will argue in the next section, the pseudo-median, closely

related to the signed Wilcoxon rank sum statistic, provides a promising solution to ap-

proach this problem, for which no canonical location parameter exists. It has a meaningful

and clear interpretation in the general case of arbitrary (skewed) distributions and reduces

to (a) the shift in the two-sample location (shift) model and (b) the difference between

the centers of symmetry when the distributions are symmetric, respectively. We propose

to base inference on a bootstrap test based on the signed rank statistic calculated from

between-sample differences. Our simulations indicate that the resulting procedure provides

high power and accurate type I error rates over a wide range of distributions, thus being

highly robust with respect to skewness, heteroscedasticity as well as different distributional

shapes.

Our test has remarkable strengths for distributions close to the generalized extreme value

(GEV) family. Here the Wilcoxon test performs poor both in terms of level and power,

whereas our test is highly robust and powerful. Thus, our results provide a reliable testing

methodology which is of particular interest in engineering as well as in finance, where such

distributions often arise but can not be handled with parametric methods due to the lack

of large samples.

Before proceeding, let us briefly discuss some related work. The seminal work of Hodges

& Lehmann (1963) on rank tests has been extended in many directions to cover ANOVA

and regression models, see Puri & Sen (1971), Hettmansperger (1991) and Denker (1985),

among others. However, most results require that, firstly, the distributions have the same

shape, and, secondly, the error variances are equal. To test for location and scale effects

simultaneously, Podgor & Gastwirth (1964) proposed to use a sum of a rank statistic

of location and a rank statistic of scale. However, under the Behrens-Fisher model the

statistic has to be modified, since now the scales may differ under the null hypothesis of

equal locations. But after these modifications, the null distribution becomes intractable and

its power reduces dramatically. In contrast, the method introduced in the present article

applies to this problem as well, without such drawbacks.

We shall use the bootstrap to obtain critical values. The bootstrap for the Wilcoxon

statistic has been studied in Gill (1989) and for general score statistics by Steland (1998).

For a recent study on how to use the bootstrap to quantify the accuracy of a ranking,
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we refer to Hall & Miller (2009). Choosing the population median as the parameter of

interest, a methodology based on the sample median was proposed in Babu et al. (1999),

which was applicable not only to the Behrens-Fisher (BF) problem, but also to the general-

ized Behrens-Fisher (GBF) problem where the underlying distributions may have different

shapes. However, this test has typically low power. A more powerful test, which avoids the

assumption of symmetry and is based on the Mann-Whitney statistic, was proposed for

the two-sample and multi-sample BF problems in Babu & Padmanabhan (2002) and Babu

& Padmanabhan (2007), respectively. Nevertheless, this procedure also has the following

drawbacks. Firstly, the consistency of the bootstrap estimator requires the two distribu-

tions to have the same shape, rendering it inapplicable to GBF problem. Secondly, the test

becomes liberal in unbalanced situations involving relatively small samples with negative

pairing. A more detailed account of the drawbacks of these procedures will be given in the

Section 5.

The organization of the article is as follows. Section 2 reviews some important aspects

of the generalized Behrens-Fisher problem, provides the arguments leading to our proposal

and discusses alternative approaches and extensions. Section 3 introduces the proposed

signed-rank statistic. We provide the required asymptotic theory, in particular a classic

central limit theorem and a bootstrap central limit theorem. Extensions to multi-sample

comparisons in an ANOVA design are given in Section 4. Section 5 provides extensive sim-

ulation studies which indicate that our proposal works well. Finally, Section 6 illustrates

the procedure by analyzing several real data sets from electrical engineering, physics, pho-

tovoltaics and psychology. Proofs of the main results and related theoretical results are

deferred to an appendix.

2. The generalized Behrens-Fisher problem revisited

This section is devoted to a careful review of some important characteristics of the

Behrens-Fisher problem. We provide the arguments leading to our proposal for the problem,

the pseudo-median, and discuss its advantages from a methodological point of view. We

also show how the approach can be extended to ANOVA designs.

2.1. Modeling aspect. Suppose we want to compare control measurements, e.g. obtained

under well defined standard conditions in a laboratory, with treatment measurements where

only a part of the treatment conditions can be controlled. This happens frequently, e.g.
5



when comparing stress measurements of a material, say steel, obtained in a lab, with

measurements under real conditions where only the amount of stress such as velocity can

be controlled, but not the stress due to other factors. Then the shapes of the distributions of

the control and treatment group may substantially differ for any choice of the (controllable)

treatment effect θ. Assuming that the treatment effect θ affects the location of the treatment

measurements, we are given a family of distributions G = {Gθ(·) = G(·−θ) : θ ∈ R}. HereG

is a fixed distribution function (d.f.) for the treatment measurements. The real experiment

is now given by the pair (F,Gθ) where F denotes the d.f of the control measurements.

Fixed treatment conditions correspond to some specific θ, and we will denote the resulting

d.f. in the sequel by G = Gθ. For a statistical analysis the statistician has to make precise

his or her understanding of the hypothesis of no difference in location of the distributions.

This is a statistical modeling task. Common choices are equality of the means,∫
x dF (x) =

∫
x dG(x),

equality of the medians,

F−1(0.5) = G−1(0.5),

or no stochastic ordering in the sense that

p =

∫
F (x) dG(x) = 1/2,

but this is not a complete list. Clearly, if we assume a location scale model,

F (x) = H((x− µ1)/σ1) and G(x) = H((x− µ2)/σ2),

for some d.f. H which is symmetric around 0, the above definitions collapse. However, in

general this is not the case. Instead, by shifting G, i.e. by picking appropriate values for

θ, we may achieve that the means or the medians coincide or that p attains the value 1/2.

This means, in the general setting, the various notions of no difference in location imply

that different pairs (F,Gθ) represent the null hypothesis. Although, in principle, fixing the

experimental or observational conditions for the treatment group fixes a value for θ, the

statisticians definition of the no difference in location null hypothesis may imply a different

one. There is no real solution to this modeling problem, and a careful choice has to be done

in each application.
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2.2. Unbiasedness as a guide in the dark and the pseudo-median. The aforemen-

tioned complications give rise to the adoption of the statistical principle of unbiasedness

given a test statistic in the spirit of Bickel & Lehmann (1975). Recall that in the standard

one-sample location problem, there is a canonical well defined parameter, namely the cen-

ter of symmetry. It coincides with the expectation of all important estimators including

R-estimators, M -estimators and L-estimators. This also eases (asymptotic) comparisons of

these estimators and derived tests, which are now mainly based on comparisons of the (as-

ymptotic) variances. If we drop the assumption of symmetry, each of these estimators has

a different expectation. Thus, there is no unique measure of location. Bickel & Lehmann

(1975) argued along the following lines.

”Given an estimator T , the only parameter of interest is its expectation

E(T ). Therefore inference should be based on that T , which estimates E(T )

satisfactorily for a wide class of distributions. In other words, that parameter

should be chosen which leads to a satisfactory solution”. (Bickel & Lehmann

1975, see Sections 5 and 6).

Further, if E(T ) depends on the sample size n, the parameter of interest is limn→∞E(T ).

We adopt this viewpoint and take the Wilcoxon signed rank statistic as a starting

point. Recall that its asymptotic expectation is related to the parameter (functional)

P (Z1 > −Z2), when applied to an i.i.d. sample Z1, . . . , Zn with a common continuous

distribution function. This fact suggests to consider the parameter P (Z1 > −Z2) and re-

lated parameters, respectively. Clearly, the Zi’s may be some function of the original data,

and we will now argue how to choose them to obtain a parameter yielding a satisfactory

solution with a corresponding test statistic of the signed rank sum type.

Assume we are given two independent samplesX,X1, . . . , Xn ∼ F (x) and Y, Y1, . . . , Ym ∼
G(x) of i.i.d. observations. Let us also assume for a moment that Var (X) = Var (Y ) exists

and is known. Denote the corresponding means by µX = E(X) and µY = E(Y ), respec-

tively. The classical Gauss test considers the difference of the means, µX − µY , as the

treatment effect of interest and bases inference on the test statistic

Tn,m =
√
nm/(m+ n)(Xn − Y m),
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where Xn = n−1
∑n

i=1Xi and Y m = m−1
∑m

i=1 Yi are the minimum variance unbiased

estimators. The central limit theorem (CLT) ensures that

Tn,m −
√
nm/(m+ n)(µX − µY )

converges in distribution to a normal distribution with median 0. This means, for large

sample sizes the distribution of Tn,m can be approximated by a normal distribution with

mean (=median)
√
nm/(m+ n)(µX − µY ). If the observations are normal, that median is

given by

δn,m = Med(Tn,m).

This fact suggests to consider the median δn,m for finite sample sizes as a reasonable

treatment effect, whether or not the data are normally distributed. The smallest sample

sizes yielding a non-trivial averaging procedure are n = m = 2. In this case, we obtain

δ = δ2,2 = Med(X2 − Y 2).

Put

Dij = Xi − Yj, i = 1, . . . , n, j = 1, . . . ,m,

and note that

(1) δ =
1

2
Med(X1 +X2 − Y1 − Y2) =

1

2
Med(D11 +D22).

δ is called pseudo-median of the distribution of D11
d
= Dij, such that δ > 0 indicates that

there is a positive location shift of theX-sample compared to the Y -sample. In what follows,

we shall take (1) as the definition of δ. Note that δ coincides with the shift parameter in

the two-sample location problem, and reduces to the difference between the centers of

symmetry in the BF problem, under the additional assumption that the distributions are

symmetric.

The associated two-sided testing problem is given by

(2) H0 : δ = 0 versus H1 : δ 6= 0.

Assuming that D11 +D22 has an unique median, we have

P (D11 +D22 ≤ 2δ) = P (D11 +D22 ≥ 2δ) = 1/2

and the testing problem (2) naturally transforms to

(3) H0 : θ(F,G) = 1/2 versus H1 : θ(F,G) 6= 1/2,
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where θ(F,G) = P (D11 +D22 > 0) is the probability being related to the singed rank sum

statistic when applied to between-sample differences. To the best of our knowledge, these

interesting relationships between the parameters δn,m, δ and θ(F,G) have not yet been

discussed in the literature.

It is worth mentioning that an interesting class of alternative distributions for the d.f.

FD(x) = F
(F,G)
D (x) =

∫
F (x+ y) dG(y)

of D11 = X1 − Y1 is the class of absolutely continuous and stochastically positive d.f.s H,

i.e., H(x) +H(−x) ≤ 1 for all x with strict inequality for an interval of x values. If F
(F,G)
D

belongs to that class, large differences are more frequently observed than small differences

in the sense that for any x > 0

P (D11 ≥ x) ≥ P (D11 ≤ −x)

with strict inequality for an interval of x values, and θ(F,G) > 1/2, see (Hettmansperger

1991, p. 49).

2.3. Generalizations to ANOVA designs. Notice that the formulation of hypotheses

in terms of the pseudo-median can be easily generalized to the important one-factorial

ANOVA problem to compare a− 1 treatments with a control.

Here, we are given a independent samples Xk1, . . . , Xknk
∼ Fk(x) with sample sizes nk,

k = 1, . . . , a. Assume that k = 1 corresponds to the control group. Denote Dklij = Xki−Xlj,

i = 1, . . . , nk, j = 1, . . . , nl. The testing problem of interest can be formulated as follows.

Define H0 = {(1, 2), . . . , (1, a)}. We aim at testing the null hypothesis

(4) H0 : Med(Dkl11 +Dkl22) = 0 for all (k, l) ∈ H0

against

(5) H1 : Med(Dkl11 +Dkl22) 6= 0 for some pair (k, l) ∈ H0 .

Notice that when there are many treatments, it is reasonable to select only certain treat-

ments of interest to increase power.
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2.4. Remarks on alternative parameters. In Section 5, we will compare our procedure

with some competitors taking into account theoretical considerations and simulation re-

sults. At this point, let us close this section with a brief comparison with another candidate

parameter, the median, Med(X1 − Y1), of the distribution of X1 − Y1.

Unfortunately, for that parameter a nice theory for the BF and GBF models does not

exist. The only method which works in the BF setting without the symmetry assumption

is the procedure due to Babu & Padmanabhan (2002). It may be possible to modify it to

conduct inference for Med(X1−Y1). But such a modification would inherit the weaknesses

of the approach. Particularly, it would yield liberal tests in unbalanced designs involving

relatively small samples with negative pairing.

On the contrary, the pseudo-median has some compelling advantages. Firstly, as shown

in the next section, it can be consistently estimated by a Hodges-Lehmann type estimator

based on a random sample. Further, testing problems formulated in terms of the pseudo-

median can be easily tested using the proposed bootstrap test. In this sense, it leads to

an unifying applicable approach for estimation and testing. Secondly, as discussed above,

it collapses to known measures of location if the data satisfy the more restrictive classic

assumptions. Furthermore, the test statistic even may become distribution-free. For prac-

tical applications, particularly for small samples, these properties are very beneficial: The

investigator can analyze his or her data under extremely weak assumptions having the

guarantee that both the testing problem and the test statistic become classical, provided

the data satisfy the classical assumptions. Thirdly, it provides a rather natural generaliza-

tion of the Hodges & Lehmann (1963) approach to the BF and GBF models. Finally, it

can be extended to ANOVA designs, and, presumably, to regression designs as well.

3. Test statistics and bootstrap test for the two-sample problem

To deal with the testing problem (2), we use a signed rank test applied to the differences

between the samples. It turns out that the asymptotic distribution of the test statistic

depends on unknown parameters which are difficult to estimate, at least in small samples.

Thus, we propose to apply an appropriate bootstrap scheme to obtain critical values.

However, the known results about the bootstrap of simple linear rank statistics due to

Steland (1998, 1997) and Gill (1989), are not directly applicable to our problem and the

same applies to bootstrap central limit theorems for U -statistics, cf. the discussion in
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Subsection 3.3 and the appendix, which provides a detailed study of the asymptotic theory

leading to our results. For general reviews of the bootstrap we refer to Babu & Rao (1993)

and Shao & Yu (1995).

3.1. Signed rank test for the differences and its asymptotic distribution. Let us

assume that the random variables Xij, 1 ≤ j ≤ ni , i = 1, 2, are defined on a common

probability space (Ω,A, P ). Recall that Dij = Xi − Yj, i = 1, . . . , n, j = 1, . . . ,m, are the

N = nm differences between the samples and denote by Rij the rank of |Dij| among |Dkl|,
k = 1, . . . , n, l = 1, . . . ,m, defined as

Rij = NĤN(|Dij|),

where

ĤN(x) =
1

N

n∑
i=1

m∑
j=1

1(|Dij| ≤ x), x ∈ R.

Now the signed rank statistic is given by

WN =
n∑
i=1

m∑
j=1

Rij1(Dij > 0)− N(N + 1)

4
.

If δ > 0, we expect to observe more positive (large) differences Dij = Xi − Yj leading to a

large value of the statistic WN . We shall also consider the scaled version TN = 2
√
n+m

N(N+1)
WN ,

i.e.

TN =
√
n+m

{
2

N(N + 1)

n∑
i=1

m∑
j=1

Rij1(Dij > 0)− 1

2

}
.

The following theorem provides the asymptotic distribution of the signed rank statistic

TN applied to the mn differences under general fixed alternatives, which is of some interest

in its own right. The asymptotic distribution of the statistic TN under the null hypothesis

is covered as a special case. The proof is deferred to the appendix. In what follows, we shall

signify convergence in distribution by
d→.

Theorem 3.1. Suppose n/(n + m) → λ ∈ (0, 1), as n,m → ∞. Then, for arbitrary fixed

distribution functions F and G,

√
n+m

{(
N

2

)−1 n∑
i=1

m∑
j=1

Rij1(Dij > 0)− θ(F,G)

}
d→ N(0, η2(F,G)),
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as n,m→∞, where the asymptotic variance η2(F,G) is given by

(6) η2(F,G) = 4λ−1σ01(F,G) + 4(1− λ)−1σ10(F,G)

with

σ01(F,G) =

∫ [∫
(1− F (y1 − x− y2)) dG(y1) dG(y2)

]
dF (x),

σ10(F,G) =

∫ [∫
(1− F (y − x1 + y2)) dF (x1) dG(y2)

]
dG(y).

Let us now consider the Hodges Lehmann estimator related to the signed rank statistic

to estimate the parameter δ = (1/2) Med(D11 +D22) quantifying the difference in location

between the X- and the Y -sample. For the present setting, it is given by

δ̂N = M̂ed(Dij +Dkl)/2,

where here and in the sequel M̂ed(ξj) denotes the sample median of a sample ξj. This

means, δ̂N is obtained by calculating the sample median of the N2 sums

Dij +Dkl, i, k = 1, . . . , n, j, l = 1, . . . ,m.

The following theorem, a strong law of large numbers, yields the consistency of δ̂N .

Theorem 3.2. Suppose that the d.f. of D11 +D22 is continuous at 1/2. Then the estimator

δ̂N is strongly consistent for the pseudo-median δ, i.e.,

δ̂N
P−a.s.→ δ,

as n,m→∞.

3.2. Bootstrap procedure. We propose to use a bootstrap procedure to obtain critical

values for the test statistics, in order to construct hypothesis tests. To simplify the exposi-

tion of the bootstrap algorithm, let us denote the empirical distribution function of a given

sample ξ1, . . . , ξl by e.d.f.(ξ1, . . . , ξl).

Bootstrap Algorithm:

1. The samples X1, . . . , Xn and Y1 + δ̂N , . . . , Ym + δ̂N mimic a H0-sample with no

difference in location. Define the corresponding differences

D̂ij = Xi − Yj − δ̂N , i = 1, . . . , n, j = 1, . . . ,m,

which mimic the differences under H0.
12



2. Select bootstrap sample sizes n∗,m∗ ∈ N and resample with replacement bootstrap

samples X∗1 , . . . , X
∗
n∗ from X1, . . . , Xn and Y ∗1 , . . . , Y

∗
m∗ from Y1 + δ̂N , . . . , Ym + δ̂N ,

i.e.,

(7) X∗1 , . . . , X
∗
n∗

i.i.d.∼ e.d.f(X1, . . . , Xn)

(8) Y ∗1 , . . . , Y
∗
m∗

i.i.d.∼ e.d.f(Y1 + δ̂N , . . . , Ym + δ̂N).

Note that the bootstrap sample sizes n∗ and m∗ may differ from n and m. Put

N∗ = n∗ +m∗.

3. Define the bootstrap sample of the N∗ = n∗m∗ differences,

(9) D∗ij = X∗i − Y ∗j , i = 1, . . . , n∗, j = 1, . . . ,m∗.

Then the bootstrap version T ∗N∗ of TN is given by

T ∗N∗ =
√
n∗ +m∗(W̃ ∗

N∗ − ĈN),(10)

where

W̃ ∗
N∗ =

2

N∗(N∗ + 1)

n∗∑
i=1

m∗∑
j=1

R∗ij1(D∗ij > 0),

ĈN =
2

N(N + 1)

n∑
i=1

m∑
j=1

R̂ij1(D̂ij > 0).

Here R∗ij denotes the rank of |D∗ij| among |D∗kl|, k = 1, . . . , n∗, l = 1, . . . ,m∗,

and R̂ij is the rank of |D̂ij| among |D̂kl|, k = 1, . . . , n, l = 1, . . . ,m. Notice that

W ∗
N∗ = N∗(N∗+1)

2
√
n∗+m∗

T ∗N∗ .

Bootstrap tests:

The construction of a bootstrap test with nominal type I error rate α ∈ (0, 1) can now

be based on either WN or TN . We describe the procedure for the statistic WN , since the

treatment of TN is then straightforward. Repeat the bootstrap B times to obtain a sample

W ∗
N∗(b), b = 1, . . . , B, of bootstrap replicates of W ∗

N∗ , the bootstrap version of WN . Denote

by q∗B(p) the empirical pth quantile of W ∗
N∗(b), b = 1, . . . , B. The null hypothesis H0 : δ ≥ 0

is rejected in favor of H1 : δ < 0, if WN < q∗B(α). Similarly, H0 : δ ≤ 0 is rejected in favor of

H1 : δ > 0, if WN > q∗B(1−α). Finally, we propose to reject the null hypothesis H0 : δ = 0

in favor of H1 : δ 6= 0, if |WN | > |q∗B|(1− α/2), where |q∗B|(p) denotes the p-quantile of the

boostrap distribution of W ∗
N . Indeed, we obtained better results in our simulation study
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for this test than for the combined two-tailed rule which rejects H0, if WN < q∗B(α/2) or

WN > q∗B(1− α/2).

3.3. Bootstrap central limit theorem. The following bootstrap central limit theorem

provides the strong consistency of the bootstrap distribution estimator of the test statistic

in the sense that

sup
x∈R
|P ∗(T ∗N∗ ≤ x)− P (TN ≤ x)| → 0, P -a.s.,

as n,m → ∞ and n∗,m∗ → ∞ under natural conditions on the (bootstrap) sample sizes.

Recall that the result follows, if, under the bootstrap probability P ∗, the sequence of

bootstrap statistics T ∗N∗ converges in distribution to the same law, P -almost surely, as the

original statistic TN under the probability measure P .

Due to the specific and new resampling scheme where one resamples from original Xi’s

and estimated residuals Yi + δ̂N , we provide a detailed proof in the appendix. The proof

makes use of the fact that we may approximate the signed rank statistic by an appropriate

U -statistic both under the probability measure P as well as under the (conditional) boot-

strap probability measure P ∗. But then the term used to center the bootstrap version, the

conditional expectation of the U -statistic under P ∗, differs from the term we want to use,

namely the signed rank statistic calculated from estimated residuals. For these reasons,

known bootstrap central limit theorems for U -statistics are not directly applicable to our

problem.

Theorem 3.3. Under the conditional bootstrap probability measure P ∗ induced by the

bootstrap scheme, we have P -a.s.

T ∗N∗
d→ N(0, η2(F,G)),

with η2(F,G) given by (6), if N,N∗ →∞ such that for some λ ∈ (0, 1)

n∗/(n∗ +m∗)→ λ, and n/(n+m)→ λ.

We close this section with some remarks.

Remark 3.1. The extensions to average ranks are straightforward and obtained by sub-

stituting the indicator 1(· ≥ 0) by its normalization, 1(· > 0) + 1
2
1(· = 0), in the above

definitions. Also notice that the corresponding operator defines an isometric isomorphism
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between the Skorohod space D[0, 1] and the space of normalized cadlag functions, see Steland

(1998) for details.

Remark 3.2. Our bootstrap scheme as well as the bootstrap central limit theorem allow for

the m-out-of-n bootstrap. However, a study to which extent one may improve the bootstrap

approximation by choosing (n∗,m∗) 6= (n,m) is beyond the scope of the present article.

4. Bootstrap test for many-to-one comparisons

The two-sample bootstrap rank test can be easily generalized to the many-to-one compar-

ison problem assuming a one-factorial ANOVA design. Suppose we are given a independent

samples, a−1 treatment groups and a control group. Suppose thatH0 ⊂ {(1, 2), . . . , (1, a)}.
To test the null hypothesis (4) against the alternative (5) one may proceed as follows.

4.1. Testing many-to-one comparison. To the k-th and l-th sample we may associate

the Nkl = nknl differences Dklij = Xki − Xlj, i = 1, . . . , nk, j = 1, . . . , nl, and define the

test statistic

Tkl =
√
nk + nl

{(
Nkl(Nkl + 1)

2

)−1 nk∑
i=1

nl∑
j=1

1(Dklij > 0)R
(k,l)
ij − 1

2

}
,

where R
(k,l)
ij denotes the rank of |Xki − Xlj| in the combined sample |Xki′ − Xlj′|, i′ =

1, . . . , nk, j
′ = 1, . . . , nl.

To test the null hypothesis H0 one may use the test statistic

TH0 =
∑

(k,l)∈H0

|Tkl|.

H0 is rejected for large values of TH0 . We will show that TH0 converges in distribution.

4.2. Bootstrap test. The bootstrap works by resampling each statistic Tkl as in the two-

sample situation described above. Noting that for each (k, l) ∈ H0 we have k = 1, let

δ̂1l = M̂ed(D1lij +D1lrs)/2

where the empirical median is calculated from the N1Nl terms D1lij+D1lrs, i, r = 1, . . . , n1,

j, s = 1, . . . , nl. Define

D̂1lij = X1i −Xlj − δ̂1l,

for i = 1, . . . , n1 and j = 1, . . . , nl.
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Resample a bootstrap sampleX∗11, . . . , X
∗
1n∗1

from the valuesX11, . . . , X1n1 , andX∗l1, . . . , X
∗
ln∗l

from Xl1 + δ̂1l, . . . , Xlnl
+ δ̂1l such that

X∗11, . . . , X
∗
1n∗1

i.i.d.∼ e.d.f.(X11, . . . , X1n1),

X∗l1, . . . , X
∗
ln∗l

i.i.d.∼ e.d.f.(Xl1 + δ̂1l, . . . , Xlnl
+ δ̂1l).

Define

D∗1lij = X∗1i −X∗lj

for i = 1, . . . , n∗1 and j = 1, . . . , n∗l . Put N∗1l = n∗1 +n∗l . The bootstrap version of T1l is then

given by

(11)

T ∗1l =
√
n∗1 + n∗l


(
N∗1l
2

)−1 n∗1∑
i=1

n∗l∑
j=1

1(D∗1lij > 0)R
(1,l)∗
ij −

(
N1l

2

)−1 n1∑
i=1

nl∑
j=1

1(D̂1lij > 0)R̂
(1,l)
ij


where R

(1,l)∗
ij denotes the rank of |D∗1lij| among |D∗1li′j′|, i′ = 1, . . . , n∗1, j

′ = 1, . . . , n∗l , and

R̂
(1,l)
ij denotes the rank of |D̂1lij| among |D̂1li′j′|, i′ = 1, . . . , n1, j

′ = 1, . . . , nl. The bootstrap

version of TH0 is now given by

T ∗H0
=

∑
(k,l)∈H0

|T ∗kl|.

Repeat the resampling step B times to obtain a sample T ∗H0
(b), b = 1, . . . , B, of bootstrap

replicates. Denote by |q|∗B(p) the empirical p-quantile of |T ∗H0
(b)|, b = 1, . . . , B. The two-

sided bootstrap rank test for the testing problem (4) rejects H0 if |TH0 | > |q|∗B(1− α).

4.3. Bootstrap central limit theorem. The asymptotic justification of the bootstrap

procedure is based on the following multivariate central limit theorem and bootstrap central

limit theorem for the random vector (Tkl)(k,l)∈H0 on which our tests statistic TH0 is based.

Theorem 4.1. Under the null hypothesis (4), the following assertions hold true.

(i) We have

(Tkl)(k,l)∈H0

d→ N(0,ΣH0), ΣH0 = diag (η2(Fk, Fl) : (k, l) ∈ H0),

provided n1, . . . , na →∞ with nk/(nk + nl)→ λkl ∈ (0, 1), for all (k, l) ∈ H0.
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(ii) Under the conditional bootstrap probability measure P ∗, we have P -a.s.

(T ∗kl)(k,l)∈H0

d→ N(0,ΣH0),

provided n1, . . . , na →∞ and n∗1, . . . , n
∗
a →∞ such that nk/(nk +nl)→ λkl ∈ (0, 1)

and n∗k/(n
∗
k + n∗l )→ λkl for all (k, l) ∈ H0.

By virtue of the continuous mapping theorem, we obtain the following corollary con-

cerning the statistics TH0 and T ∗H0
, which are continuous functions of (Tkl : (k, l) ∈ H0)

and (T ∗kl : (k, l) ∈ H0), respectively.

Corollary 4.1. Under the assumptions of Theorem 4.1 the following assertions hold true.

(i) We have

TH0

d→
∑

(k,l)∈H0

|Zkl|,

where (Zkl : (k, l) ∈ H0) ∼ N(0,ΣH0), if n1, . . . , na →∞ such that nk/(nk +nl)→
λkl ∈ (0, 1), for all (k, l) ∈ H0.

(ii) Under the conditional bootstrap scheme we have P -a.s.

T ∗H0

d→
∑

(k,l)∈H0

|Zkl|,

provided n1, . . . , na →∞ and n∗1, . . . , n
∗
a →∞ such that nk/(nk +nl)→ λkl ∈ (0, 1)

and n∗k/(n
∗
k + n∗l )→ λkl for all (k, l) ∈ H0.

5. Comparisons and Simulations

This section is devoted to a detailed comparison of the proposed method with competi-

tors. Both the two-sample setting and the many-to-one ANOVA design are studied with

a focus on the former. Our Monte Carlo study covers various common simulation models

as well as some members of the generalized extreme value (GEV) family of distributions.

Indeed, it turns out that for GEV distributions our test has exceptional properties in terms

of level and power and outperforms the classic Wilcoxon test, although the test is still easy

to apply. Moreover, there is no price to pay, since for other distributions such as mixtures

of normals our test is at least as good and often better than its competitors.
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We start with a careful comparison of the proposed approach with some competitors,

which takes into account both theoretical considerations and simulation results from ear-

lier studies. As a result, we can confine our Monte Carlo simulations considerably. Those

simulations focus on the case of small samples in the presence of unbalanced sample sizes,

heteroscedasticity and asymmetry. We simulated the type I error rate as well as the power

under a location shift under various distributions corresponding to the above phenomena.

The simulations were done in R using C functions to speed up calculations.

5.1. Comparison with some alternative procedures. The competitors to our ap-

proach are the procedures of Babu-Padmanabhan-Puri, Mann-Whitney-Wilcoxon, Fligner-

Policello and the Babu-Padmanabhan (BP) procedures. We explain their drawbacks and

also how our procedure is free of those drawbacks.

Let us start with the test of Babu et al. (1999). This test has typically low powers. In the

two sample case, it is equivalent to the median test, whose asymptotic relative efficiency

(ARE) in the normal model is only 0.637 (c.f. Lehmann 1975, p. 379). Next consider the

Mann-Whitney-Wilcoxon statistic U , the number of pairs (Xi, Yi) with Xi < Yi. Denote its

null variance, lower, and upper quantiles in the location model by V (L), q(L), and Q(L),

respectively. Further, denote by V (BF ), q(BF ), and Q(BF ) their counterparts in the BF

model. Recall that V (L) = mn(m+ n+ 1)/12 (c.f. Lehmann 1975, p. 14). Let us consider

the BF model. First assume that F and G are symmetric. In this case, V (BF ) will be

typically greater than V (L) and also unknown. As a result, q(BF ) and Q(BF ) will be

far more dispersed than q(L) and Q(L), respectively, yielding a liberal test. Increasing the

sample even makes things worse. The larger the sample size, the greater the difference

between q(L) and q(BF ) (and similarly between Q(L) and Q(BF )). This is also borne out

by the results in Table 2 of the (Fligner & Policello 1981, p. 166).

Let τ be the ratio of the scale parameters. The standard location model corresponds

to the case τ = 1. In this case U is robust. However, in the BF model for m = 25 and

n = 20, the empirical level of the corresponding test is 8.9% (when τ = 10) even for the

normal distribution. For skewed distributions, the performance will be even worse, as will be

explained shortly. The Fligner-Policello (FP) procedure seeks to overcome this drawbacks

by obtaining a variance estimate, say v, being consistent under their assumptions, and

uses the statistic (U/mn − 0.5)/
√
v (formula 3.2, p164), which yields good results in the

symmetric case. Next consider the skewed case and assume, for simplicity, the parameter
18



of interest is the population median. Then the null hypothesis H0 is that the population

medians are equal and, without loss of generality, can be assumed to be zero. Let p =

P0(X1 < Y1), where P0 indicates that the probability is calculated under H0. In this

setting, the variance estimate of the FP procedure is still correct, but the mean is wrong,

since only under symmetry we have p = 0.5. In the skewed case, p will be unknown and

typically different from 0.5. As will be explained in the next paragraph, p could be close to

0 or close to 1. Therefore the FP procedure centers U/mn at the wrong value, 0.5, instead

of the much smaller or much larger value p. As a result, its limiting normal distribution

will have the correct variance but the wrong mean, making the test liberal for one tail and

conservative for the other.

Let ρ denote the ratio of the scale parameter of G to that of F . Suppose F and G have

the same shape, the same median 0 and are right-skewed. Now it can be shown that, if

ρ > 1, then p < 0.5 and as the skewness increases, p will decrease and move towards zero

(similarly if ρ < 1, p will move towards one). Suppose ρ > 1. If F and G are exponential,

then it is known that p < 0.5. If F and G are lognormal, then p will get even smaller,

since the lognormal is even more skewed. Now consider the BF model, with ρ > 1 and F

and G both lognormal with a common median zero. Then instead of centering (U/mn) at

the much smaller value p, FP centers it at the much larger value 0.5. Clearly, the limiting

distribution will have the wrong mean.

This was also found in earlier simulation studies. Here is an example. Let F and G be

exponential with a common median zero and scale parameter 1 and 2 respectively. For a

two-sided test with nominal level 10 percent, and n = m = 20, the empirical levels were

about 7.5 percent and 2.5 percent respectively. Increasing the sample size to n = m = 30,

only made matters worse, the levels becoming about 9 percent and 1 percent respectively.

The Mann-Whitney statistic U also has this drawback. Its mean under the location

model is (0.5)mn. But in the BF model, the correct mean is pmn, involving the unknown

probability p. Therefore, the test now uses the wrong mean (besides the wrong variance,

as explained earlier) and thus becomes highly non-robust.

The BP procedure achieves robustness to skewness by proposing a new estimate of p, say

p̂, and estimates the quantiles of
√
m+ n(p̂−p) by bootstrapping. However, the consistency

of the bootstrap estimate requires F and G to have the same shape, thereby rendering it

inapplicable to the GBF problem. Moreover, due to the somewhat messy nature of this
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estimate p̂, convergence to the limiting distribution slows down in the case of extremely

unbalanced samples involving negative pairing; that is, the larger scale parameter occurring

with the smaller sample size. For example, for a two-sided test at nominal level 5% and

sample sizes n = 10 and m = 20 and the standard deviation of F being twice as much

as that of G, the empirical levels for the normal, exponential and lognormal distributions

were about 10%, 12% and 15% respectively.

5.2. Monte Carlo results for the two-sample setting. In view of the above dis-

cussion, only our test and the Mann-Whitney test were studied. The latter, despite its

non-robustness, was included because of its computational simplicity.

Samples X1, . . . , Xn and Y1, . . . , Ym were drawn from distributions F and G (described

a little later), where (n,m) = (10,10), (10,20) and (20,20). Two-sided tests with nominal

level 5% were performed. The level was estimated by Monte Carlo rejection rates based on

50, 000 simulation runs. Each bootstrap was based on 2, 5000 repetitions. The power was

estimated in the same vain, where the alternative was specified by a location shift of size

0.5, i.e. that constant was added to the observations of the X-sample.

The following distributions for F and G were taken into account.

i) Short-tailed distribution: We studied a short-tailed distribution, namely a mixture

of U(−0.5, 0.5), the uniform distribution on (−0.5, 0.5), and a normal distribution, N(a, b),

with specific choices of the mean a and the standard deviation b. Indeed, (Cox 1977, p.

1083), when analyzing textile data, encountered short-tailed sets as frequently as long-tailed

ones for that problem. (Hogg 1974, p. 976) and (Wegman & Carrol 1977, p. 976) reported

similar experiences in connection with data on examination scores and data passing through

electronics instruments in the US Naval Laboratory. Both short-tailed and long-tailed sets

arise in the Physics and Astronomy sets of Stigler (1977) and the Analytical Chemistry sets

sent to us by Rocke Rocke et al. (1982). Moreover a mixture of U(−0.5, 0.5) and N(0, 1)

is a realistic short-tailed distribution (cf Wegman & Carrol 1977, p. 976). Therefore, we

chose (0.5)U(−0.5, 0.5) + (0.5)N(0, 1) as a typical short-tailed distribution.

ii) Normal Mixtures: Normal mixtures provide a common approach to mimic long-

tailed distributions. We considered the mixture model pN(0, 1) + (1 − p)N(0, 4) for p ∈
{1, 0.9, 0.85}.
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iii) Asymmetric Distributions: The standard exponential and the standard lognor-

mal are examples of asymmetric distributions. These were chosen due to their importance

in biostatistics, industrial engineering and reliability studies. In the case of symmetric dis-

tributions, we may assume that, without loss of generality, the pseudo-medians are zero.

Clearly, this is no longer true for skewed distributions. Now we have to find the pseudo-

median δ and add it to observations of the Y -sample. Thus, to ensure H0, we have to work

with the samples X1, . . . , Xn and Y1 + δ, . . . , Ym + δ. According to Hamza (2008), this can

be achieved by solving a non-linear algebraic equation, if F and G are exponential, but

not for log-normal distributions. Thus, δ was obtained by simulation.

iv) Generalized extreme value distribution: We also investigated the performance

of our proposal for some members of the generalized extreme value distribution (GEV),

i.e. for the family of distributions given by the d.f.s

FGEV (x) = exp

(
−
(

1 + γ
x− µ
σ

)−1/γ
)
, ∈ R,

where µ ∈ R is the location, σ > 0 the scale and γ ∈ R the shape parameter. As well

known, the GEV family covers the Weibull (γ = 0) and Fréchét (γ > 0) distributions as

special cases. We considered the GEV distributions correspondingo ξ = 0, 0.25, , 0.5, 0.75.

The balanced case was studied for n = m ∈ {15, 25}, as an unbalanced design we selected

n = 25 and m = 50. Again,we studied models 1 to 3 corresponding to homogeneous

variances and two heteroscedastic settings.

Whereas Table 1 and Table 2 summarize our findings for the distributions i) - iii), the

results for the GEV distributions are provided in Tables 3 and 4. For each distribution F ,

we considered three scale models. Model 1 corresponds to equal scales, whereas in model 2

and model 3 the ratio of the standard deviation of the second sample to the first sample

equals
√

2 and 2, respectively.

5.3. Monte Carlo results for many-to-one comparisons. We also investigated the

behavior of the bootstrap test for the many-to-one ANOVA testing problem for small

sample sizes. However, in view of the unsatisfactory performance of the Wilcoxon test in

the two-sample case (as explained later), we focused on level and power of our test. We

considered three samples, i.e., in the notation of Section 2, the null hypothesis is given by
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n = m = 10 n = m = 20 n = 10,m = 20

Distribution Model W PS W PS W PS

St. Normal 1 4.4 4.9 5.3 5.2 4.8 5.5

2 4.1 4.8 5.2 5.4 6.0 5.4

3 4.4 4.5 6.2 5.0 8.4 5.4

Mixture 1 3.1 4.5 5.4 6.3 4.5 5.7

2 3.4 4.4 4.7 5.5 6.4 5.6

3 4.5 4.5 5.6 5.8 7.6 6.1

10% Cont. 1 4.0 5.3 4.4 4.6 4.6 6.0

2 4.5 5.5 4.3 4.6 6.0 5.0

3 4.4 4.6 4.9 4.6 7.4 4.9

15% Cont. 1 4.3 5.6 5.6 5.4 5.5 5.7

2 4.5 5.7 5.7 5.3 6.5 6.4

3 4.7 4.8 6.1 5.6 8.8 6.2

Exponential 1 3.8 4.4 4.9 4.9 5.3 6.5

2 5.0 5.1 6.6 4.7 8.7 7.3

3 6.4 5.0 9.6 5.1 11.5 8.1

Lognormal 1 3.8 4.9 5.4 4.9 7.5 7.0

2 4.1 4.3 7.1 5.1 9.3 8.8

3 5.5 5.5 7.7 5.0 12.6 8.4

Nor-Lognor 1 6.1 5.7 5.9 4.1 5.5 5.1

Table 1. Simulated level under various distributions for equal scales as well

as under heteroscedasticity for the Wilcoxon test (W) and the proposed test

(PS).

the set H0 = {(1, 2), . . . , (1, a)} with a = 3. Independent random samples

X1i ∼ F (x/σ1), X2j ∼ F ((x− δ2 −∆2)/σ2), X3k ∼ F (x− δ3 −∆3),

of sample sizes n1, n2, n3 were simulated, where for i = 1, 2 δi denotes the pseudo-median of

the Xi-sample relative to the X1-sample (control group) for fixed σ1, σ2 and ∆2 = ∆3 = 0,

where ∆2 and ∆3 are the location shifts. This means, ∆2 = ∆3 = 0 corresponds to the null
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n = m = 10 n = m = 20 n = 10,m = 20

Distribution Model W PS W PS W PS

St. Normal 1 18.4 20.0 31.4 32.2 24.6 26.1

2 14.7 16.4 23.4 22.7 19.8 17.7

3 9.0 9.7 17.5 16.2 16.2 12.5

Mixture 1 36.3 34.8 68.7 60.0 50.8 46.2

2 26.1 24.3 54.2 45.9 39.6 32.5

3 18.2 17.6 38.1 32.5 29.1 21.3

10% Cont. 1 12.2 12.1 27.7 25.1 15.2 16.2

2 9.0 9.5 21.0 19.7 13.1 11.6

3 8.0 9.2 14.2 14.2 11.3 8.5

15% Cont. 1 12.4 13.6 24.7 23.0 14.9 13.9

2 9.7 11.6 19.7 19.2 12.8 11.3

3 9.3 9.4 12.2 12.0 11.9 9.0

Exponential 1 27.8 24.4 58.5 44.3 49.9 35.3

2 17.3 17.2 39.3 34.8 32.5 25.7

3 7.9 10.5 13.6 22.0 16.7 16.0

Lognormal 1 19.1 14.2 37.5 24.1 32.4 20.7

2 10.9 10.6 19.4 17.4 21.2 15.2

3 5.1 8.0 10.8 16.2 11.5 11.0

Nor-Lognor 1 21.3 14.5 36.7 22.3 25.2 14.4

Table 2. Simulated power of the Wilcoxon test (W) and the proposed test

(PS) for selected distributions corresponding to the Behrens-Fisher and Gen-

eralized Behrens-Fisher models.

hypothesis of identical pseudo-medians. For Model 1, σ1 = σ2 = 1 (equal scales), whereas

model 2 corresponds to σ1 = 2 and σ2 =
√

2. The power was assessed using ∆2 = ∆3 = 1.

The following table provides the results for the small sample size setting, i.e., n1 =

n2 = n3 = 10. Each entry is based on 10,000 simulation runs and a bootstrap with 1,000

replications.

5.4. Discussion of results. The simulation results support the following conclusions.
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n = m = 15 n = m = 25 n = 25,m = 50

Distribution Model W PS W PS W PS

GEV γ = 0 1 5.1 4.9 5.0 5.3 5.0 5.4

2 5.3 4.7 5.6 5.3 4.1 5.1

3 6.3 5.1 6.7 5.2 3.9 5.1

GEV γ = 0.25 1 5.0 4.6 5.1 4.8 5.0 5.2

2 5.8 4.7 5.8 4.7 4.6 4.9

3 7.2 4.9 7.8 5.1 5.7 4.6

GEV γ = 0.5 1 5.0 4.2 5.0 4.7 4.9 5.2

2 5.8 4.4 6.0 4.6 5.0 4.6

3 7.7 5.5 9.4 4.9 6.6 4.6

GEV γ = 0.75 1 5.1 4.0 5.0 4.8 5.1 5.1

2 6.4 4.1 6.5 4.3 5.4 4.6

3 9.1 5.5 11.0 4.6 8.8 4.3

Table 3. Simulated level of the Wilcoxon test (W) and the proposed test

(PS) for some selected GEV distributions.

Behrens-Fisher model: We start our discussion with the Wilcoxon test.

(i) Symmetric distributions. For n = m = 10, the Wilcoxon test was quite robust even

for the Behrens-Fisher models 2 and 3. This is not surprising, since due to the smallness of

the samples, the differences between the critical levels for the Behrens-Fisher and location

models were not significant. However, they became significant with increasing sample sizes,

as shown by the liberal levels for n = m = 20.

(ii) Skewed distributions. Multiplying a standard exponential (or lognormal) variate by

a positive constant to effect a scale change, automatically induced a change in location as

well. As a result, the test became liberal, unless the samples were extremely small. However,

the actual performance was even worse. The test became extremely liberal for lower tails

and conservative for the upper tails, so that some kind of an averaging effect took place

for a two-tailed test. It is enough to explain this for the case of lognormal (model 3) with

n = m = 20. For one-sided testing at nominal level 0.05, the empirical levels were found

to be 0.15 and 0.02 for the lower- and upper-tailed tests respectively.
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n = m = 15 n = m = 25 n = 25,m = 50

Distribution Model Wilc PS W PS W PS

GEV γ = 0 1 61.7 58.6 82.0 79.4 91.6 88.8

2 42.5 43.7 63.5 65.9 77.5 81.9

3 25.1 28.3 39.2 46.0 49.3 67.4

GEV γ = 0.25 1 54.5 43.9 76.9 65.2 86.6 75.4

2 37.6 34.2 57.5 53.9 70.3 69.7

3 19.0 21.3 29.5 35.2 36.0 54.6

GEV γ = 0.5 1 49.0 32.6 71.0 50.3 81.2 61.3

2 33.1 25.5 53.2 43.0 64.1 57.4

3 15.0 16.0 23.0 26.9 28.9 44.7

GEV γ = 0.75 1 45.4 25.4 66.1 38.7 77.3 51.0

2 31.3 20.1 48.4 32.7 59.6 47.3

3 13.5 13.1 18.8 20.7 19.4 33.7

Table 4. Simulated power of the Wilcoxon test (W) and the proposed test

(PS) for selected GEV distributions.

Distribution model Level Power

Mixture 1 4.71 91.2

2 4.97 53.3

Exponential 1 4.55 72.5

2 6.03 35.4

10% Cont. 1 4.60 49.96

2 4.61 16.24

Lognormal 1 3.74 49.24

2 5.31 24.46

Table 5. Empirical size and power of the many-to-one ANOVA test.

Our test performed creditably both when the samples were small (n = m = 10) and

when they were moderate (n = m = 20). One plausible explanation for the slightly worse

performance when n = 10 and m = 20 is that the extreme imbalance in the relatively
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small samples, coupled with negative pairing, somewhat slowed down convergence to the

asymptotic results.

Generalized Behrens-Fisher model (Normal-Lognormal): Now the Wilcoxon

test seemed to perform reasonably well. However, this was a case of two wrongs making

one right. Further studies showed that it was liberal for the upper tail and conservative for

the lower tail. For example, with n = m = 20 and nominal level 0.05, the empirical levels

for the lower- and upper-tailed tests were 0.02 and 0.095 respectively. Our test performed

creditably for all sample sizes.

Generalized extreme value distribution: For distributions of the GEV type or

similar to them, our test makes really a strong point. The empirical sizes in Table 3 clearly

demonstrate that the Mann-Whitney test is no longer applicable when it comes to GEV

distributions and heteroscedasticity. For a scale factor of 2 (model 3) the empirical level

is far from being acceptable. As a consequence, its power is better in some cases as can

be seen from Table 4. However, in the heteroscedastic case even power drops severely and

our proposal becomes more powerful. Thus, for GEV-like distributions the methodology

developed in the present substantially outperforms the classical approach.

Many-to-one comparison: In view of the unsatisfactory performance of the Wilcoxon

test, only the many-to-one comparison version of our test was considered. As the simulation

results show, the behavior of our test for the (generalized) Behrens-Fisher problem provides

a very reliable and powerful statistical test.

6. Examples

We applied our test procedure to some real data sets from engineering, photovoltaics,

physics, chemistry and psychology. Firstly, to illustrate our procedure and its applicability

to a wide range of scientific areas. Secondly, to gain further insight into these interesting

data as some of them already appeared in the literature. Last but not least, since those

data sets, and some others we cannot publish, motivated our work on that classic statistical

problem. For our analyses, which were conducted in R, the bootstrap critical values and

bootstrap p-values were estimated by the Monte Carlo method using 500,000 independent

replications. The random number generator was initialized with the seed 1. For testing

the equality of scales the F-K:med test was used (see Fligner & Killen (1976) and Hall &

Padmanabhan (1997)).
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6.1. Electrical Engineering. Nair (1984) gives the following two-sample data set from

electrical engineering. It consists of the times (in minutes) to breakdowns of an insulating

fluid under elevated voltage stresses of 32 kV (X-sample),

(0.27, 0.40, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.30, 53.24, 82.85, 89.25, 100.58, 215.50),

and under 36 kV (Y -sample),

(0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77, 25.50).

The analysis in Hall & Padmanabhan (1997) revealed a scale difference. The value of our

test statistic is 1.824234. The bootstrap 5% lower and upper critical value are −1.440128

and 1.301188, respectively, and the 5% two-sided bootstrap critical value is 1.949623. The

bootstrap p-value for the one-sided test H0 : δ ≤ 0 against H1 : δ > 0 is 0.0075. Hence,

we may conclude that the pseudo-median is positive indicating larger values in the first

sample. The pseudo-median is estimated by δ̂N = 26.345.

6.2. Photovoltaics. In photovoltaics the power output of photovoltaic modules is the

most important variable to assess quality, see Steland & Zähle (2009) and Herrmann &

Steland (2010). The physical production process and further technical issues imply that one

cannot specify a parametric class of distributions. Indeed, almost any type of distribution

(heavily skewed, symmetric, bimodal etc.) is observed in practice. Further, the distribution

of photovoltaic modules taken from different lots or shipments may differ, even if these

modules satisfy the same technical specifications. Figure 1 depicts an empirical QQ-plot of

two random samples of sample sizes n = 30 and m = 50 drawn from two shipments of the

same module for a solar power plant. Here the main issue is that the distributions are quite

different. The pseudo-median provides a convincing approach to analyze these samples. We

applied our approach to check whether the samples differ in location. The value of our test

statistic is −2.389 and the pseudo-median is estimated by δ̂N = −1.99. That difference is

significant at any reasonable level, since the bootstrapped p value is 0.0022.

6.3. Physics. The following classic data sets taken from (Cressie 1997, p. 46) pertain to

the Heyl & Cook (1936) measurements of the acceleration of gravity, expressed as deviations

from 980, 060 × 103cm/sec2. Heyl and Cook described the great amount of care taken in

the experiments and the adjustments to avoid systematic error. Three of the eight series
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Figure 1. QQ-plot of photovoltaic measurements of two shipments.

are as follows:

x1 = (87, 95, 98, 100, 109, 100, 81, 75, 68, 67),

x2 = (78, 78, 78, 86, 87, 81, 73, 67, 75, 82, 83),

x3 = (84, 86, 85, 82, 77, 76, 80, 83, 81, 78, 78, 78).

These series of measurements are known to exhibit inhomogeneity in their variances. The

values of the F-K:med statistic and its 95% quantiles were 168 and 103 respectively, re-

sulting in rejection of the hypothesis of equal scales, thus suggesting a Behrens-Fisher

model. The value of our statistic and its bootstrap 95% quantiles are 2.999986 and 3.0328

respectively, confirming that there is no difference in location.

6.4. Psychology. The following data sets based on the skin resistance of three groups, are

a slight modification of the original data sets provided by R. Wilcox. Those observations

were collected in a study dealing with schizophrenia. The three samples are

x1 = (0.998, 0.469, 0.53, 0.558, 0, 0, 0, 0, 0.282, 2.680),

x2 = (0.250, 0, 0, 0.390, 0.348, 0, 0.207, 0.444, 0, 0.318),

x3 = (0.250, 0, 0, 0, 0, 0.115, 0.795, 0.177, 0, 0.158, 0).
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The values of the F-K:med statistic and its 95% quantiles were 116 and 94 respectively,

resulting in rejection of the hypothesis of equal scales. So, once again Behrens-Fisher model

seems appropriate.

Next, the value of our statistic and its bootstrap 95% quantiles are 2.116502 and 3.025593

respectively. Hence, the null hypothesis is accepted.

6.5. Analytical Chemistry. Finally, we re-analyzed one of the data set of chemical mea-

surements collected and analyzed in Rocke et al. (1982). The data consist of two inde-

pendent samples with sample sizes 24 and 25, respectively. They have been analyzed and

provided in Hill & Padmanabhan (1991), thus we do not reproduce them here. The data

exhibit asymmetry, lighter tails than a normal distribution as well as heteroscedasticity.

Applying our methodology leads to a value for the test statistic of −2.893042. The boot-

strap critical value is 1.754018 and the bootstrap p value 3.8 · 10−5 leading to a clear

rejection of the null hypothesis. The pseudo-median is estimated by −0.13 which is in close

agreement to the difference of the arithmetic means −0.1353667.
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Appendix A. PROOFS

Although at first glance the proposed bootstrap scheme seems to be rather straightfor-

ward, it is non-standard in that we resample from differences which are, firstly, dependent

with a certain structure, and, secondly, asymmetrically adjusted for a location difference

by a nonlinear robust statistic of the data, which complicates the probabilistic analysis.

The latter means that our bootstrap resamples from a specific set of residuals.
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Therefore, this appendix establishes the required theoretical results for the proposed

methods and provides some additional related results such as laws of large numbers and

approximation results which are of independent interest. To the best of our knowledge,

both the bootstrap results for such a setting and the central limit theorem for the signed

rank statistic applied to the between-samples differences are new. However, it turns out

that the counting structure of the statistics allows us to base our proofs on the theory

of U -statistics. We shall introduce notation and cite required results when needed; for

general background on required probabilistic results on U -, V - and rank statistics, we refer

to Randles & Wolfe (1979), Denker (1985), Lee (1990), Borovskikh (1996), and Shorack

(2000).

A.1. Proof of the bootstrap central limit theorems for the two-sample setting.

To establish bootstrap central limit theorems we use the fact that a signed rank statistic

is asymptotically equivalent to an U -statistic. Bootstrap central limit theorems have been

extensively studied in the literature, we refer to Bickel & Freedman (1981), Dehling et al.

(1990), and Hušková & Janssen (1993), among many others. For a different approach to

show consistency of the bootstrap see Steland (1998). However, as discussed in Subsec-

tion 3.3, those results can not be directly applied to our problem.

To fit the one-sample framework, define the dependent random variables

Z(i−1)m+j = Xi − Yj, i = 1, . . . , n, j = 1, . . . ,m.

Recall that the sum of the signed ranks,

W ′
N =

∑
i

Ri1(Zi > 0)

is not an U -statistic, but can be written as a linear combination of U -statistics, since

W ′
N =

∑
i

1(Zi > 0) +
∑
i<j

1(Zi + Zj > 0).

The first term corresponds to the kernel h1(z) = 1(z > 0) and the associated U statistic

UN = N−1
∑N

i=1 1(Zi > 0), whereas the second term is related to the U statistic

ŨN =

(
N

2

)−1∑
i<j

1(Zi + Zj > 0)
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given by the kernel h2(x, y) = 1(x+ y > 0), x, y ∈ R. Hence,

TN =
√
n+m

(
N

2

)−1(
W ′
N −

N(N + 1)

4

)
=
√
n+m

(
ŨN +

(
N

2

)−1

NUN − 1/2

)
(12)

=
√
n+m(ŨN − 1/2) + oP (1).

To verify a central limit theorem for the one-sample U -statistic ŨN based on dependent

observations, we will approximate it by the two-sample U -statistic

UN =

(
n

2

)−1(
m

2

)−1 ∑
1≤i<i′≤n, 1≤j<j′≤m

1(Xi − Yj +Xi′ − Yj′ > 0).

UN is induced by the two-sample kernel

(13) h(x1, x2, y1, y2) = 1(x1 − y1 + x2 − y2 > 0),

for x1, x2, y1, y2 ∈ R, which is symmetric in its x− and y− arguments, respectively. Obvi-

ously, UN is a non-degenerate U -statistic and estimates the parameter

θ = θ(F,G) = EUN = P (X1 − Y1 +X2 − Y2 > 0).

Consider now the one-sample U -statistic defining the dominant term of the statistic TN

for the sample Dij = Xi − Yj,

ŨN =

(
N

2

)−1 ∑
(i−1)m+j<(i′−1)m+j′

1(Xi − Yj +Xi′ − Yj′ > 0).

Here the sum extends over all i, i′ = 1, . . . , n and j, j′ = 1, . . . ,m such that (i− 1)m+ j <

(i′−1)m+ j′. The following lemma states that ŨN is asymptotically equivalent to UN , and

holds true for the original as well as the bootstrap version of the statistic.

Lemma A.1. Assume X1, . . . , Xn and Y1, . . . , Ym are independent i.i.d. samples defined

on a common probability space (Ω,A, µ) with distributions F and G, respectively, under

the probability measure µ. Then, under µ

√
n+m(ŨN − θ(F,G)) =

√
n+m(UN − θ(F,G)) + o(1), µ− a.s.,

as n+m→∞ such that n/(n+m)→ λ ∈ (0, 1).
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Proof. Note that (i− 1)m+ j < (i′− 1)m+ j′ if and only if either i < i′ and j, j′ arbitrary

or i = i′ and j < j′. By symmetry of the kernel h associated with UN ,(
N

2

)
ŨN =

∑
(i−1)m+j<(i′−1)m+j′

1(Xi − Yj +Xi′ − Yj′ > 0)

= 2
∑

1≤i<i′≤n,1≤j<j′≤m

1(Xi − Yj +Xi′ − Yj′ > 0)

+
∑

1≤i<i′≤n,1≤j≤m

1(Xi − Yj +Xi′ − Yj > 0)

+
∑

1≤i≤n,1≤j<j′≤m

1(Xi − Yj +Xi − Yj′ > 0).

The first term equals 2
(
n
2

)(
m
2

)
UN . The second term has n(n − 1)m/2 summands and the

third one sums up nm(m− 1)/2 bounded terms. Hence, noting that
(n

2)(
m
2 )

(N
2 )

= 1
2
− n+m−2

2(nm−1)

and, since the summands are bounded by 1,

√
n+m

n+m− 2

2(nm− 1)
UN = o(1), µ− a.s.,

(even for all ω ∈ Ω), if n/(n+m)→ λ ∈ (0, 1), we obtain

√
n+m(ŨN − θ(F,G)) =

√
n+m

(
2

(
n
2

)(
m
2

)(
N
2

) UN − θ
)

+O

(
n(n− 1)m

(nm)(nm− 1)

)
+O

(
m(m− 1)n

(nm)(nm− 1)

)
=
√
n+m(UN − θ(F,G)) + o(1),

as n+m→∞ such that n/(n+m)→ λ ∈ (0, 1), µ-a.s. �

Remark A.1. In Lemma A.1, µ may be a random probability measure such as a (regular)

conditional distribution. Indeed, we shall apply Lemma A.1 using µ = P as well as with

µ = P ∗.

It is worth mentioning that a consequence of Lemma A.1 and (12) is that

(2/N2)W ′
N = ŨN + oP (1) = θ(F,G) + oP (1), n,m→∞,

which proves the following result.
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Proposition A.1. A weakly consistent estimator of θ(F,G) is given by

θ̂(F,G) = (2/N2)W ′
N .

Next let us first verify the strong consistency of the estimator δ̂N . Define the d.f.

K(x) = P ((X1 − Y1 +X2 − Y2)/2 ≤ x), x ∈ R.

Assume K−1(x) is continuous at 1/2. We will now verify the assertion of Theorem 3.2,

namely that for n,m→∞,

δ̂N
P−a.s.→ δ = K−1(1/2).

Proof of Theorem 3.2. Note that δ̂N = K−1
n,m(1/2), where

Kn,m(x) =
1

n2m2

n∑
i,k=1

m∑
j,l=1

1((Xi − Yj +Xk − Yl)/2 ≤ x).

Kn,m(x) is a two-sample V -statistic based on the i.i.d. samples {Xi/2} and {Yj/2}. Thus,

for each fixed x Kn,m(x)→ E1((X1 − Y1 +X2 − Y2)/2 ≤ x) = K(x), as n,m→∞. Using

arguments as in the proof of (Steland 2005, Theorem 3) one can also show uniform con-

vergence, but we shall not elaborate on this issue. Since Kn,m(x)→ K(x) in all continuity

points x of K is equivalent to K−1
n,m(t) → K−1(t) for all t where K−1 is continuous (e.g.

van der Vaart 1998, 21.2), the assertion follows. 2

Let us now verify asymptotic normality of TN .

Proof of Theorem 3.1. Using the decomposition (12) and Lemma A.1 with µ = P we

obtain that
√
n+m

{(
N

2

)−1 n∑
i=1

m∑
j=1

Rij1(Dij > 0)− θ(F,G)

}
equals

√
n+m(UN − θ(F,G)) + o(1) + oP (1), µ− a.s.

UN is a two-sample U -statistic calculated from the two independent i.i.d. samplesX1, . . . , Xn

and Y1, . . . , Ym. Hence, we may apply the central limit theorem for two-sample U -statistics

(e.g. Randles & Wolfe 1979, Theorem 3.4.14) to conclude that under fixed distributions F

and G
√
n+m(UN − θ(F,G))

d→ N(0, η2(F,G)),
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as n,m→∞ with n/(n+m)→ λ ∈ (0, 1). Notice that

σ01(F,G) = Cov (h(X1, X2, Y1, Y2), h(X1, X3, Y3, Y4))

and

σ10(F,G) = Cov (h(X1, X2, Y1, Y2), h(X3, X4, Y1, Y3)).

where h is given by (13).

2

Let us now turn to the verification of the proposed bootstrap procedure. In the sequel,

we allow for general bootstrap sample sizes n∗ and m∗, respectively. Define

(14) F̂n(x) = n−1

n∑
i=1

1(Xi ≤ x), Ĝm(x) = m−1

m∑
i=1

1(Yi + δ̂N ≤ x), x ∈ R,

Then

(15) X∗1 , . . . , X
∗
n∗

i.i.d.∼ F̂n,

(16) Y ∗1 , . . . , Y
∗
m∗

i.i.d.∼ Ĝm.

Recall the definition of the bootstrap signed rank statistic prior to centering,

W̃ ∗
N∗ =

(
N∗

2

)−1 n∗∑
i=1

m∗∑
j=1

R∗ij1(X∗i − Y ∗j > 0),

where R∗ij denotes the rank of |X∗i −Y ∗j | among the bootstrap values |X∗i −Y ∗j |, i = 1, . . . , n∗,

j = 1, . . . ,m∗. Further, define the two-sample bootstrap U -statistic

U∗N∗ =

(
n∗

2

)−1(
m∗

2

)−1 ∑
1≤i<i′≤n∗,1≤j<j′≤m∗

1(X∗i − Y ∗j +X∗i′ − Y ∗j′ > 0),

and the one-sample bootstrap U -statistic

ŨN∗ =

(
N∗

2

)−1 ∑
(i−1)m∗+j<(i′−1)m∗+j′

1(X∗i − Y ∗j +X∗i′ − Y ∗j′ > 0).

Note that for the expectation of U∗N∗ under P ∗ we have

θ∗N = E∗(U∗N∗) = P ∗(X∗1 − Y ∗1 > −(X∗2 − Y ∗2 )).
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Hence, we expect that the conditional distribution of
√
n∗ +m∗(U∗N∗ − θ∗N∗) converges a.s.

to the same limit distribution as
√
n+m(UN − θ(F,G)). However, in the definition of T ∗N∗

we used the centering term

ĈN =

(
N

2

)−1 n∑
i=1

m∑
j=1

1(D̂ij > 0)R̂ij.

The following lemma shows that the difference between the correct centering term θ∗N and

ĈN is of the order oP (N−1/2) which ensures that we can use ĈN .

Lemma A.2. Assume n/m→ λ ∈ (0,∞). Then

(i)
√
n+m(θ∗N − ĈN) = o(1), as N →∞.

(ii)
√
n∗ +m∗T ∗N∗ =

√
n∗ +m∗(U∗N∗ − E∗(U∗N∗)) + oP (1) + oP ∗(1), as N,N∗ →∞.

Proof. Note that P ∗ is given by P ∗((X∗1 , Y
∗
1 ) = (Xi, Yj + δ̂N)) = (nm)−1, i = 1, . . . , n,

j = 1, . . . ,m. Hence

θ∗N =
1

n2m2

n∑
i,i′=1

m∑
j,j′=1

1(Xi − Yj +Xi′ − Yj′ − 2δ̂N > 0) =:
1

n2m2

n∑
i,i′=1

m∑
j,j′=1

Uii′jj′

is a two-sample V statistic with kernel h(x1, x2, y1, y2) = 1(x1 + x2 − y1 − y2 > 0). Let

Ûn,m = 1
n(n−1)m(m−1)

∑
i 6=i′
∑

j 6=j′ Uii′jj′ denote the corresponding two-sample U -statistic.

Recall that U - and V - statistics are known to be equivalent. Thus it suffices to show that
√
n+m(Ûn,m − ĈN) = oP (1). Note that n2m2Ûn,m − θ∗N is given by(∑

i=i′

∑
j,j′

+
∑
i,i′

∑
j=j′

+

(
1

(n− 1)(m− 1)
+

1

n− 1
+

1

m− 1

)∑
i 6=i′

∑
j 6=j′

)
Uii′jj′ .

All sums have not more than O(n3) terms. By boundedness of the kernel and m = O(n)

we have n(Ûn,m− θ∗N) = O(1), which verifies (i). Finally, note that the decomposition (12),

Lemma A.1 with µ = P ∗, and the result just shown yield

√
n∗ +m∗ T ∗N∗ =

√
n∗ +m∗{W̃ ∗

N∗ − ĈN}

=
√
n∗ +m∗{ŨN∗ − ĈN}+ oP ∗(1)

=
√
n∗ +m∗{ŨN∗ − θ∗N}+ oP ∗(1) + o(1)

=
√
n∗ +m∗{U∗N∗ − θ∗N}+ oP ∗(1) + o(1)

=
√
n∗ +m∗{U∗N∗ − E∗(U∗N∗)}+ oP ∗(1) + o(1),
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as N →∞ and N∗ →∞, P ∗-a.s. �

The following fact is used in the proof of Theorem 3.3, but it is also interesting in its

own right.

Lemma A.3. We have Ĝm(x)→ G(x), as m→∞, almost surely, for all x ∈ R.

Proof. For convenience, we give an explicit proof avoiding abstract arguments. In what fol-

lows, we refer to the probability measure P . Fix x ∈ R. By the Glivenko-Cantelli theorem,

it suffices to show that∣∣∣∣m−1

m∑
i=1

1(−∞,x+bδN ](Yi)− 1(−∞,x+δ](Yi)

∣∣∣∣ a.s.→ 0,

as m → ∞. The above expression is, of course, bounded by Bm = m−1
∑m

i=1 1AN
(Yi),

where AN = [x + δ̂N , x + δ) ∪ [x + δ, x + δ̂N). By Theorem 3.2 there exists a set Ω0 with

P (Ω0) = 1 and δ̂N(ω) → δ, N → ∞, for all ω ∈ Ω0. Let ε > 0 and choose N0(ω) such

that for N ≥ N0(ω) we have |δ̂N(ω) − δ| < ε. Now for ω ∈ Ω0 and N ≥ N0(ω) we have

[x + δ, x + δ + (δ̂N(ω) − δ)) ⊂ [x + δ, x + δ + ε) and [x + δ̂N , x + δ) ⊂ [x + δ − ε, x + δ).

Thus, AN(ω) ⊂ [x+ δ − ε, x+ δ + ε]. Consequently,

m−1

m∑
i=1

1AN (ω)(Yi(ω)) ≤ m−1

m∑
i=1

1[x+δ−ε,x+δ+ε](Yi(ω)),

and there exists a set Ω1 with P (Ω1) = 1 such that for all ω ∈ Ω0 ∩ Ω1 (an a.s. event) the

right side of the above display converges to G(x+ δ+ ε)−G(x+ δ− ε)→ 0, as ε→ 0. �

We are now in a position to prove Theorem 3.3.

Proof of Theorem 3.3. By Lemma A.2 it suffices to verify that P−a.s. under the

conditional bootstrap distribution P ∗

√
n∗ +m∗(U∗N∗ − θ∗N)

d→ N(0, η2(F,G)),

as N,N∗ →∞. Since U∗N∗ is a non-degenerate U -statistic, under the conditional bootstrap

law P ∗ given the sample {Xi, Yj : i = 1, . . . , n, j = 1, . . . ,m}, we have under P ∗

√
n∗ +m∗(U∗N∗ − θ∗N)

d→ N(0, η̂2
N),

as N∗ →∞, where η̂2
N = η2(F̂n, Ĝm), i.e.,

η̂2
N = 4λ−1ζ̂N,01 + 4(1− λ)−1ζ̂N,10
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with ζ̂N,01 = ζ01(F̂n, Ĝm) and ζ̂N,10 = ζ10(F̂n, Ĝm). Thus, it remains to show that the

asymptotic variance, η̂2
N , converges P -a.s. to η2(F,G). Since ‖F̂n − F‖∞ → 0 a.s., as

n→∞, and Lemma A.3 yields ‖Ĝm −G‖∞ → 0 a.s., as m→∞, we have to show that

sup
z

∣∣∣∣∫ (1− F̂n(y − z)) dĜ(y)−
∫

(1− F (y − z)) dG(y)

∣∣∣∣ ,
if n,m→∞, P -a.s. Recall that the Skorohod space D[0, 1] consists of all right-continuous

functions [0, 1]→ R with existing left limits. It is known that the functional τ : (D[0, 1])2 →
R given by

τ(z,G) =

∫
z dG, (z,G) ∈ (D[0, 1])2,

is continuous in G w.r.t. the uniform topology, uniformly over those z ∈ D[0, 1] with

|z| ≤ K and
∫
|dz| ≤ K for some constant K > 0. Here

∫
|dz| denotes the total variation

semi-norm of z. From this fact it is straightforward to conclude that

ζ̂N,01
P−a.s.→ ζ01(F,G), ζ̂N,10

P−a.s.→ ζ10(F,G),

as n,m→∞, implying η̂2 → η2, as m,n→∞. Therefore, we obtain P -a.s.

T ∗N∗
d→ N(0, η2(F,G)),

as N,N∗ →∞, provided n∗/(n∗ + m∗) converges to same limit as n/(n + m), in order to

ensure that the asymptotic variances coincide. This completes the proof. 2

A.2. Proof of the multi-sample bootstrap central limit theorem. Finally we give

a sketch of the proof for the multi-sample setting.

Proof of Theorem 4.1. We show (ii). Assertion (i) follows using the same arguments.

By the Cramer-Wold device we have to verify that for all (ρkl)(k,l)∈H0 with
∏

k,l |ρkl| 6= 0,

(17)
∑

(k,l)∈H0

ρklT
∗
kl

d→ N

0,
∑

(k,l)∈H0

ρ2
klη

2(Fk, Fl)

 ,

if nk, n
∗
k, nl, n

∗
l →∞ under the constraints given in the theorem, Lemma A.2 yields

T ∗kl =
√
n∗k + n∗l (U

(k,l)∗
N∗kl

− θ∗kl) + oP (1) + oP ∗(1).
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where

U
(k,l)∗
N∗kl

=

(
n∗k
2

)−1(
n∗l
2

)−1∑
i<i′

∑
j<j′

1(X∗ki −X∗lj +X∗ki′ −X∗lj′ > 0),

θ∗kl = E∗(U
(k,l)∗
N∗kl

)

for all (k, l) ∈ H0. Hence, since H0 is a finite set,

(18)
∑
k,l

ρklT
∗
kl =

∑
k,l

ρkl
√
n∗k + n∗l (U

(k,l)∗
N∗kl

− θ∗kl) + oP (1)

A finite set of multi-sample U -statistics is jointly asymptotically normal, see Lehmann

(1963) or (Randles & Wolfe 1979, Th. 3.6.9). Therefore, under the conditional bootstrap

distribution, (
√
n∗k + n∗l (U

(k,l)∗
N∗kl

− θ∗kl) : (k, l) ∈ H0) is asymptotically normal with asymp-

totic variances η̂2 = η2(F̂nk
, Ĝnl

). Lemma A.3 applied to the sample Xl1 + δ̂kl, . . . , Xlnl
+ δ̂kl

yields a.s. convergence to η2(Fk, Fl), as nk, nl → ∞. It remains to study the asymptotic

covariances. Note that for l 6= m

E∗(T ∗klT
∗
km) =

√
n∗k + n∗l

√
n∗k + n∗mE

∗(U
(k,l)∗
Nkl

− θ∗kl)(U
(k,m)∗
N∗km

− θ∗km) + oP (1)

and

E∗(U
(k,l)∗
Nkl

− θ∗kl)(U
(k,m)∗
N∗km

− θ∗km)

=
1(

n∗k
2

)2(n∗l
2

)(
n∗m
2

) ∑
1≤i<i′≤n∗k,1≤j<j′≤n

∗
l

∑
1≤r<r′≤n∗k,1≤s<s′≤n∗m

E∗(Vklii′jj′Vkmrr′ss′)

where

Vklii′jj′ = 1(X∗ki −X∗lj +X∗ki′ −X∗lj′ > 0)− θ∗kl
Vkmrr′ss′ = 1(X∗kr −X∗ms +X∗kr′ −X∗ms′ > 0)− θ∗km

Vklii′jj′ and Vkmrr′ss′ are independent under P ∗, if i 6= r and i 6= r′ and i′ 6= r and i′ 6=
r′ yielding E∗(Vklii′jj′Vkmrr′ss′) = 0. This argument applies to

(
n∗k
2

)(
n∗k−2

2

)(
n∗l
2

)(
n∗m
2

)
terms.

Therefore,

(19) E∗(T ∗klT
∗
km) = o(1) + oP (1).

Let h(x1, x2, y1, y2) = 1(x1 − y1 + x2 − y1 < 0) denote the kernel function inducing the

two-sample U -statistics. Notice that the four-sample U -statistic

1(
n∗k
2

)(
n∗l
2

)(
n∗k
2

)(
n∗m
2

)∑
i,i′

∑
j,j′

∑
r,r′

∑
s,s′

[ρklh(Xki, Xki′ , Ylj, Ylj′) + ρkmh(Xkr, Xkr′ , Yms, Yms′)]
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equals the linear combination of two-sample U -statistics

ρkl
1(

n∗k
2

)(
n∗l
2

)∑
i,i′

∑
j,j′

h(Xki, Xki′ , Ylj, Ylj′) + ρkm
1(

n∗k
2

)(
n∗m
2

)∑
r,r′

∑
s,s′

h(Xki, Xki′ , Ymj, Ymj′),

since the first term of each summand does not depend on r, r′, s, s′, and the second one

does not depend on i, i′, j, j′. Hence
∑

(k,l)∈H0
ρklTkl is asymptotically equivalent to a multi-

sample U -statistic, the summands being asymptotically uncorrelated due to (19). Thus, we

may conclude that
∑

k,l∈H0
ρklT

∗
kl is asymptotically normal with asymptotic variance given

by
∑

(k,l)∈H0
ρklη(Fk, Fl)

2, i.e., (17) holds. 2
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