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ABSTRACT. Acceptance sampling represents an important tool for quality control. The practical
methods of choice for non-normal variables are attribute sampling and variables sampling assum-
ing normality applied to averages instead of single observations. Both methods usually lead to
very large sample sizes and are therefore infeasible in practice if observations are expensive. We
discuss and extend recent results developed for the photovoltaic industry and actively used there.
Here - and presumably in other industries as well - additional data are available which can be used
to construct valid and asymptotically optimal sampling plans for non-normal measurements. Con-
sistency and asymptotic optimality of the sampling plans, which are random in our setup, as well
as asymptotic normality of the required sample size are established under weak assumptions. We
also provide sensitivity studies dealing with the effects of a systematic bias (shift) between the ad-
ditional data and the lot (shipment), which may matter in practice. The new plans are investigated
by simulations to some extent.

1. INTRODUCTION

In industry, quality control of lots or shipments of produced items is an important practical
problem, particularly when high-quality leadership is a strategic goal. Delivering shipments of
bad quality to customers may result in expensive law suits. In the photovoltaic industry, the
expectations of customers in terms of quality of delivered photovoltaic modules (PV modules)
are very high, presumably due to the fact that state of the art semi-conductor technologies are
at the core of the business, thus being associated with digital precision. Acceptance sampling,
which deals with the problem to determine the minimal sample size which controls the producer’s
as well as the consumer’s risk, is therefore an important practical approach to the problem, cf.
the recent monograph [11]. The customer is interested in the quality of his or her shipment of
modules and not in the average outgoing quality. Thus, manufacturers interested in customer
satisfaction should control production on the basis of outgoing shipments.
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In this article, we study the classic acceptance sampling problem under the general assumption
that the measurements (the power output in photovoltaics) may follow an arbitrary continuous
distribution function (d.f.). To handle this case, we use additional data in the form of a historic
data set, a situation which is typically present in photovoltaics. We derive sampling plans assum-
ing a less general distributional model as in our previous work [13], but the results of the present
article are valid under less restrictive assumptions. Further, the model of the present article nicely
allows us to investigate sensitivity and robustness issues, respectively. We study the effect on the
sampling plans, when the distributions of the shipment and the lab samples differ, which is of
substantial interest for applications, where a systematic bias is of primary concern.

Our setup is as follows: We consider a shipment X1, . . . ,XN ∼ F with a common distribution
function F which is assumed to be continuous and strictly increasing with a finite fourth moment.
Here and in what follows, ∼ always indicates that the random variables are independent and
identically distributed. However, the stochastic relationship between samples may be arbitrary,
i.e. they are not required to be independent. Let µ = E(X1) and σ2 = E(X1− µ)2 ∈ (0,∞). In
the photovoltaic problem motivating our work, Xi represents the true but random power output
of the ith module, which is classified as non-conforming, i.e. being of low quality, if Xi ≤ τ for
some constant τ . In practice, one puts τ = µ(1−ε) where ε is the tolerance. The additional data
are provided in the form of a historic sample Y1, . . . ,Ym ∼ F of size m. Conditions on m will be
given in Section 3. Clearly, the expected fraction of non-conforming modules in the shipment is
given by

p = P(X1 ≤ τ) = F(τ).

Suppose we have fixed two numbers 0 < AQL < RQL < 1, namely the acceptable qualilty
level (AQL) and the rejectable quality level (RQL), such that the lot should be accepted if p ≤
AQL, whereas it should be rejected when p ≥ RQL. Since p is unknown to us and checking
all modules is infeasible, our aim is to decide on the basis of a control sample X ′1, . . . ,X

′
n of

n measurements, n as small as possible, whether or not the shipment has to be accepted with
controlled error probabilities of false decisions. Suppose that the decision is based on a statistic
T ′n = T ′n(X

′
1, . . . ,X

′
n) using the decision rule to accept the shipment if and only if T ′n > c. A natural

choice to use a standardized sum statistic, i.e. to accept if

T ′n =
√

n
X ′n− τ

σ
> c.

Then a solution (n,c) to the above problem, defined rigorously in Section 3, is called sampling
plan.
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In the case of normally distributed items, the optimal solution is well known and indeed based
on the statistic T ′n. The resulting procedure is called variables sampling. However, in photo-
voltaics the power output measurements of PV modules are usually non-normal, such that vari-
ables sampling yields invalid sampling plans and is therefore not applicable. Indeed, all kinds
of distributional shapes appear in practice. We discuss some of the factors leading to that un-
pleasant empirical fact in the next section. It is well known, and we shall provide the relevant
arguments in Section 3 when deriving the plans, that the optimal sampling plan for an arbitrary
d.f. F depends on that unknown F .

In photovoltaics, our key application for the methodology discussed in the present article, ad-
ditional data from the production line, the so-called flasher report tables, are available and can
be used in the construction of sampling plans. This key idea has been used in [1] to develop a
photovoltaic-specific two-stage decision procedure using those flash data in order to construct
valid sampling plans for normal as well as non-normal data. The procedure has also been im-
plemented in a software tool which is used in the photovoltaic industry, cf. [3]. In [13], we
elaborated on the new procedure addressing the non-normal case by establishing its asymptotic
optimality as well as its asymptotic distribution assuming a general location scale model for the
additional data. The mathematical proofs required advanced tools from probability theory such
as empirical process theory and the functional delta method in metric spaces. Unfortunately,
the formula for the asymptotic variance turned out to be rather complex and first simulations
indicated that the variance of the estimated sample size is rather high even when hundreds of
additional measurements are available. Thus, a natural question is whether it is possible to con-
struct similar sampling plans leading to simpler formulas, simpler derivations and better accuracy
in practice. For another recent proposal we refer to [4]. We show that indeed concise proofs can
be given for the approximation theorem behind the construction of the sampling plans as well
as for the central limit theorem for the estimated sample size. Here the classic Bahadur-Kiefer
representation of sample quantiles plays a key role in the derivations. Further, we provide a new
result on the strong consistency of the estimated sample size, thus strengthening the weak con-
sistency implied by the central limit theorem, and the weak consistency of the estimated critical
value under weak assumptions.

A further major goal of the present work is to study the effect of a systematic bias affecting
both the lot and lab measurements and the historic data, respectively, in order to get a better
understanding of what happens in this case. Indeed, such a sensitivity analysis with respect to
the sampling distribution – depending on the viewpoint it can be regarded as a robustness study
as well – can provide valuable insights into the stability of a procedure. We will study both a
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model where a constant bias is present and a model where a asymptotically vanishing bias is
assumed. The latter approach has a nice interpretation in terms of an asymptotic learning effect
and shows that a local bias which is sufficiently small in larger control samples has no effect
on the sampling plan. Although it is not surprising that a constant bias has such an effect, our
findings show that the bias does not affect the required sample size, which greatly simplifies its
treatment in practice.

The organization of the article is as follows. In Section 2, we provide some information on the
photovoltaic background of the problem. Section 3 reviews the derivation of acceptance sampling
plans and introduces the sampling plans proposed for the above setting including results on their
asymptotic optimality. The study on the effects of a systematic bias and asymptotic learning is
presented in Section 4. The result on the asymptotic normality is given in Section 5. Finally,
Section 6 provides numerical results from a Monte Carlo study to assess the accuracy of the
proposed sampling plans. We reveal an interesting and surprisingly strong effect of the algorithm
used to calculate a sample quantile. Proofs of the results are postponed to an appendix.

2. BACKGROUND ON AND APPLICATION TO PHOTOVOLTAICS

In the present section, we give a brief account of the photovoltaic background which motivated
our research and the way how we approached the problem.

Photovoltaics represents one of the key technologies having the potential to provide a substan-
tial contribution to the world’s energy problem. Presumably, the main reason why the market
share of solar energy is still relatively small compared to its potential and benefits is the fact that
the costs per watt are still rather high. Although the costs have been substantially decreased in
recent years, research still focuses on further reductions in costs, either by increasing the effi-
ciency of a given solar cell technology or by developing new technologies, e.g. by employing
cheaper materials and chemicals.

The economic life time of a photovoltaic system (PV system) ranges between 20 and 30 years.
Thus, the quality in terms of the power output of the modules at delivery is a crucial parameter
for the profitability of such an investment. Even small departures from the nominal power output
accumulate to considerable losses over the years. Assessing the quality of PV modules, which is
done under standard conditions (STC) in a lab, is therefore an important issue for quality control.

PV modules are an interconnected assembly of solar cells. To protect the cells from damage
during manufacturing, delivery and usage, they are embedded between a tedlar plate on the
bottom, a tempered glass on the top, and framed, usually with an aluminium frame. Since a
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single module can produce only a limited amount of electricity, around 200 watts under STC, a
PV system consists of many connected PV modules.

There are two common technologies to manufacture PV modules: Crystalline modules use
silicon solar cells produced from solid Si wafers, whereas the CIS thin-film technology applies
copper (C), indium (I) and selenum (S) in a layer construction of around 2 µm onto a substrate.
The electrical properties such as the spectrum of the sun light transformed into electricity, the
loss of efficiency when exposed to heat, a serious issue for systems installed in Southern Europe
or Africa, or the efficiency when there are clouds as it is often the case in Northern Europe,
heavily depend on the technology and various other physical parameters of the chosen module
type.

Calibrating a PV module in a testing laboratory is also a different problem, since a couple of
factors may complicate collecting measurements and also may lead to considerable difference
of indoor and outdoor measurements. As reviewed and experimentally analyzed in [14], the
following effects matter in practice:

(i) Measurement related sweep-time effects refering to the influence of the duration to
complete an IV scan. Depending on the selected flash tester, which generates a pulse of
calibrated light, such a scan can be based on up to 100 flashes. The duration of each flash
is typically 100 ms. For details on accurate testing of PV panels we refer to [10].

(ii) Spectral mismatch arising when using a reference cell with a spectral response different
from that of the device under test; its size depends on the spectral irradiance distribution
of the spectral simulator with respect to the reference spectrum AM 1.5G.

(iii) Finally, thin-film modules are affected by the effect of light soaking, since the perfor-
mance (even under standard test conditions) depends on the history of module (exposure
to light or storage in the dark). The effect is in effect at the time of delivery but disappears
when the modules are exposed to sun light for several days. The light soaking effect was
first reported in [9] and is addressed to the tunneling of electrons trapped in deep states of
CdS to holes in the CIS layer valence band under illumination, resulting in an increase in
the open-circuit voltage and fill factor. During that light soaking period the performance
can increase by 2−5%, cf. [7]. In industrial practice, it can even be larger.

Finally, it is common practice in industry to classify the produced PV modules in classes. As a
consequence of the above discussion, when analyzing comparable modules, i.e. modules of the
same technology and power rating satisfying additional criteria for inclusion or exclusion in a
study, the true distribution of measurements may have any form. Especially, measurements are
typically non-normal, thus violating the classic assumptions in statistical acceptance sampling.
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Relying on ad hoc proposals such as forming subgroups and then applying variables sampling
to the subgroup means to ensure approximatively the normal assumption, is not feasible due
to the high costs of taking control measurements, since this procedure leads to enormous sam-
ple sizes. However, taking the control measurements is very expensive. For the same reason,
applying attribute sampling is no reasonable solution.

Solar cells are manufactured in a production line. The performance of each module is mea-
sured in a sun simulator using short flashes. These measurements are therefore called flash
measurements and form the flash data tables. In present days, they are routinely collected by
manufacturers, thus often large samples are available. However, these cheap measurements may
differ from the measurements taken in a photovoltaic laboratory. One should check carefully,
whether a given flasher report table follows the same distribution as the shipment before apply-
ing the methods discussed in the present article. Some standard tests and their application to real
photovoltaic data are described in [3]. For a new approach to the problem we refer to the recent
work [12].

3. THE ACCEPTANCE SAMPLING PROBLEM

Acceptance sampling is a well established field of statistics and quality control – at least for
the classic distributional assumptions. For basic notions we therefore refer to [11]. Our goal is
to find an acceptance sampling plan (n,c), i.e. a sample size n for a control sample and a critical
value c, such that

(1) P(T ′n > c)≥ 1−α, p≤ AQL,

and

(2) P(T ′n > c)≤ β , p≥ RQL.

Here α is an upper bound on the probability that the shipment is rejected when it is of high
quality, thus controlling the producer’s risk, whereas β is the consumer’s risk that the shipment
is accepted although it is of low quality. Our derivations below will show that P(T ′n > c), the
operating characteristic (OC), is indeed a function of the quality level p. Approximations based
on large sample theory will then allow us to solve the problem to construct appropriate sampling
plans. We first discuss the unrealistic case that the underlying distribution is known and then
proceed to a general solution for an arbitrary unknown distribution of the measurements.
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3.1. The Case of a Known Distribution. Let us assume that F and therefore µ =
∫

xdF(x) as
well as σ2 =

∫
x2 dF(x)−µ2 are known. Using the crucial relationship F(τ) = p⇔ τ = F−1(p),

we obtain

T ′n > c ⇔
√

n
X ′n−µ

σ
> c+

√
n(F−1(p)−µ)

σ
.

By virtue of the central limit theorem, we get the approximation

(3) P
(√

n
X ′n− τ

σ
> c
)
≈ 1−Φ

(
c+
√

n(F−1(p)−µ)
σ

)
.

Notice that this approximation requires n to be large. However, since statistical inference should
never be based on too few observations, assuming that the central limit theorem provides a suf-
ficiently accurate approximation should not be too restrictive for many distributions F . Further,
one may check the accuracy of the above approximation after calculating the sampling plan, such
that c is fixed, using historic data which is available by assumption. This could be done, for in-
stance, by estimating the Berry-Esséen upper bound or by means of a simulation study; the latter
approach being preferable.

Thus, (1) and (2) are approximately satisfied, if we select (n,c) such that

(4) 1−Φ

(
c+
√

n(F−1(AQL)−µ)
σ

)
≥ 1−α

and

(5) 1−Φ

(
c+
√

n(F−1(RQL)−µ)
σ

)
≤ β

hold true. Since Φ is strictly increasing, these inequalities are equivalent to

Φ
−1(α)−

√
n(F−1(AQL)−µ)

σ
≥ c≥Φ

−1(1−β )−
√

n(F−1(RQL)−µ)
σ

.

Consider the left and right sides of the above chain of inequalities as functions in the real variable
n. Then we arrive at the following proposition.

The optimal sampling plan (n,c) is obtained as the intersection of the mappings

n 7−→ Φ
−1(α)−

√
n(F−1(AQL)−µ)

σ

and

n 7−→ Φ
−1(1−β )−

√
n(F−1(RQL)−µ)

σ
.
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Equating the above mappings leads to

Φ
−1(α)−Φ

−1(1−β ) =
√

n
σ

(F−1(AQL)−F−1(RQL)).

By assumption, F is strictly increasing, which allows us to solve the equation for n and c leading
the following result.

For known distributional parameters µ and σ , the optimal sampling plan is given by

n∞(µ,σ) =
σ2 (Φ−1(α)−Φ−1(1−β )

)2

(F−1(AQL)−F−1(RQL))2 ,(6)

c(µ,σ) = Φ
−1(α)−

√
n(F−1(AQL)−µ)

σ
.(7)

Particularly, the optimal sampling plan depends on the unknown d.f. F of the measurements.
Theorem 3.1 shows that the asymptotically optimal sampling plan requires knowledge of the

location µ and dispersion σ as well as knowledge of the distribution of the quality measurements.
But those quantities are unknown to us, such that the sampling plan can not be applied in practice.

3.2. The Case of an Unknown Distribution. Clearly, the case that F is known to us is only of
theoretical interest. Thus, we shall now assume that F is an arbitrary d.f. such that the fourth
moment is finite. The basic idea is now to estimate the unknown quantities in the formulas de-
rived in the previous subsection. However, various mathematical problems now arise. One has to
establish an approximation of the OC curve leading to the same sampling plans one obtains when
estimating unknown quantities in formulas (6) and (7). It turns out that within the framework
of the present article, a transparent proof of such an approximation can be given without relying
on empirical process theory as in [13]. Further, we present a new result establishing strong con-
sistency of the estimated sample size and weak consistency of the estimated critical value under
fairly weak assumptions.

We shall now derive the sampling plan in the case of unknown parameters µ and σ when
additional data Y1, . . . ,Ym are given. Statistical intuition suggests to use the modified decision
rule

Tn :=
√

n
X ′n− τ

Sm
> c,
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where S2
m = 1

m−1 ∑
m
i=1(Yi−Y m)2 with Y m = 1

m ∑
m
i=1Yi. Let us introduce the empirical distribution

function of the historic sample defined by

Fm(y) =
1
m

m

∑
i=1

1(Yi ≤ y), y ∈ R.

Here 1(A) = 1, if the expression A (defining an event) is true, and 1(A) = 0, if A is false. As
usual,

(8) F−1
m (p) = inf{t ∈ R : Fm(t)≥ p}, p ∈ (0,1),

denotes the left continuous empirical quantile function, i.e. F−1
m (p) = Y(bnpc+1), where Y(1) ≤

·· · ≤ Y(m) denotes the order statistic.
In the sequel, we need the following regularity assumption on the sample sizes n and m.

Assumption (A): n
m → 0, as n,m→ ∞.

The reasoning behind that assumption is the following: The construction of the asymptotically
optimal procedure requires certain approximations as in (3). Now both n and m have to be large,
but, in addition, n/m has to be small. However, that condition is not restrictive in practice, as long
as the historic data set is large enough. This is the typical case in photovoltaics and presumably
in other areas of application as well.

The approximation of the operating characteristic P(Tn > c) is now more involved and given
in the following theorem, which is an analog of [13, Theorem 3.1].

Suppose F is a continuous and strictly increasing d.f. with a finite second moment. If
X ′1, . . . ,X

′
n, the control sample, and Y1, . . . ,Ym, the historic data set, are random samples satis-

fying Assumptions (A), then there exists a sequence δn(p), n ∈ N, of random variables with
δn(o) = oP(1), such that for all c ∈ R

P(Tn > c) = P

(
√

n
X ′n−µ

σ
+δn(p) > c+

√
n(F−1

m (p)−Y m)
Sm

)
leading to the approximation

P(Tn > c)≈ 1−Φ

(
c+
√

n(F−1
m (p)−Y m)

Sm

)
.

A proof of this result is given in the appendix. Notice that the result holds true under the weak
assumption of a finite second moment of the underlying distribution. Repeating the derivations
of the previous subsection, we obtain the analog of Proposition 3.1. The optimal sampling plan
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(n,c) is obtained as the intersection of the mappings

n 7−→ Φ
−1(α)−

√
n(F−1

m (AQL)−Y m)
Sm

and

n 7−→ Φ
−1(1−β )−

√
n(F−1

m (RQL)−Y m)
Sm

.

One has to take into account that Fm (and therefore F−1
m ) is not strictly increasing and

F−1
m (AQL) < F−1

m (RQL) may not hold. However, the latter condition holds true if m is large
enough, which allows us to solve algebraically the equation as in the previous subsection leading
to formulas for n and c depending on F−1

m . Further, the empirical quantiles F−1
m (p) converge to

F−1(p) with probability 1, since that property is well known to be equivalent to Fm(y)→ F(y)
with probability 1, as m→ ∞, which of course holds true, and Y m to µ as well as Sm to σ , as
m→ ∞, with probability 1, as long as the underlying d.f. F has a finite second moment. A more
refined argument yields the following result, which is proved in the appendix.

Suppose F is a d.f. with a finite fourth moment. For unknown distributional parameters, the
estimated sampling plan is given by

nm =
S2

m
(
Φ−1(α)−Φ−1(1−β )

)2(
F−1

m (AQL)−F−1
m (RQL)

)2 ,

cm = Φ
−1(α)−

√
n(F−1

m (AQL)−Y m)
Sm

.

It converges to the optimal sampling plan in the sense that

nm/n∞(µ,σ) a.s.→ 1 and cm− c(µ,σ) P→ 0,

as m→∞, provided Assumption (A) holds true as well as F ′(F−1(AQL))> 0 and F ′(F−1(RQL))>

0.
It is worth mentioning that the asymptotic optimality holds true under the weak regularity

assumption of a finite fourth moment, the minimal assumption under which the statistic S2
m is

meaningful in the sense of strong consistency and asymptotic normality. The proof given in
the appendix shows that the strong consistency of nm even holds under the weaker condition
of a finite second moment. However, although the assumption of finite higher moments is not
regarded an issue in photovoltaics, since measurements are often even bounded by definition of
the sampling process, it may be in other areas of applications.
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4. THE EFFECT OF A BIAS AND ASYMPTOTIC LEARNING

In practice, it may happen that the distribution of the historic data set, Y1, . . . ,Ym, and the
distribution of control measurements X ′1, . . . ,X

′
n, which are made in a laboratory, do not coincide.

Therefore the present section is devoted to a study of the effect of departures from the assumption
Xi ∼ F . We are interested in the effect of a systematic bias as it may happen when using a
differently calibrated measurement system to measure modules of the lot and of the control
sample. We will see that in this setting the optimal sampling plan depends on the bias, even
asymptotically. That result is interesting in its own right, but can be used in practice as well, in
order to correct for such a systematic bias, provided an estimate of the bias is available.

The next step of our analysis is then to model the bias as a function of the sample size n
which tends to 0, as n approaches ∞, i.e. to consider local alternatives, and to ask under which
conditions on n and m there is no asymptotic effect of that disturbance. Considering a sequence of
distributional models indexed by the optimal sample size n has two interpretations, both of which
are meaningful. Firstly, one may conduct a sequence of experiments where the risk probabilities
α and β are decreased from experiment to experiment leading to larger sample sizes n. Then a
bias of the order o(1) can be interpreted as a learning effect when conducting more and more
experiments. Secondly, when conducting one experiment, a model with a bias of order o(1)
captures the fact that presumably more efforts are spent on obtaining better measurements with
smaller bias, when analyzing large samples to get very precise results, which are more expensive
than conducting small experiments.

4.1. The Effect of a Fixed Systematic Bias. Let us assume that the random variables X1, . . . ,XN

representing the shipment (lot) satisfy

X1 + γ, . . . ,XN + γ ∼ F, N ∈ N,

for a given constant shift γ , whereas the historic sample is not affected by the shift, i.e. Y1, . . . ,Ym∼
F . This means that the distribution of the shipment measurements is equal in distribution to
the historical measurements after adding γ . Since the control measurements are selected from
the shipment, we have X ′1 + γ, . . . ,X ′n + γ ∼ F as well. Equivalently, we could assume that
X1, . . . ,XN ∼ F and Y1− γ, . . . ,Ym− γ ∼ F , but the above formulation simplifies the derivations.

Now the fraction of non-conforming modules satisfies the equation

p = E

(
1
N

N

∑
i=1

1(Xi ≤ τ)

)
= F(τ + γ)
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or, equivalently, τ = F−1(p)− γ . It turns out that when going through all derivations given in
the previous section and the proof of Theorem 3.2 in the appendix, we arrive at the following
approximation of the operating characteristic

P(T ′n > c)≈ 1−Φ

(
c+
√

n(F−1
m (p)−Y m)

Sm
−
√

nγ

Sm

)
leading to the optimal sampling plan

nγ =
S2

m(Φ−1(α)−Φ−1(1−β ))2

(F−1
m (AQL)−F−1

m (RQL))2
,(9)

cγ = Φ
−1(α)−

√
n(F−1

m (AQL)−Y m)
Sm

+
√

nγ

Sm
.(10)

The interpretation of these results is as follows: The bias (location shift) γ has only an effect
on the critical value, but the optimal sample size remains the same. As a consequence, we may
formulate the following rule of thumb: If the measurements of the shipment are shifted by γ

compared to the historic sample measurements, one can apply the optimal sampling plan derived
in the previous section when correcting the critical value by the additive term

√
nγ/Sm.

4.2. The Effect of Asymptotic Learning. Suppose now that

(11) X1 + γn, . . . ,XN + γn ∼ F, N ∈ N,

for some sequence {γn} of real numbers converging to 0 as n→ ∞.
Assumption (B): Suppose the sample sizes n, m and the sequence {γn} are selected such that

n
m

= o(1) and
√

mγn = o(1),

as n,m→ ∞.
Suppose γn is chosen as

γn = Γn−ξ , n≥ 1,

for positive constants Γ and ξ . Then it is easily seen that Assumption (B) is satisfied if in addition
to n/m = o(1) the condition

m
n2ξ

= o(1)

holds true. For brevity of presentation, we omit the proof of the following result and refer to [8]
for details.
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Under the sampling model (11) and Assumption (B), the approximation of the operating char-
acteristic obtained in Theorem 3.2 still holds true, such that the sampling plan (nm,cm) given in
Theorem 3.2 is asymptotically optimal in this case.

5. ASYMPTOTIC NORMALITY

The present section is devoted to a study of the asymptotic distribution of the optimal sample
size, as the sample size m of the historic data set tends to ∞. It turns out that in the present setting
a proof of the asymptotic normality can be based on the Bahadur-Kiefer representation of sample
quantiles and the delta method in R3 combined with the multivariate central limit theorem.

For simplicity of presentation, we use the abbreviations

pα = AQL and pβ = RQL

in what follows.
Suppose the historic data set as well as the lot and control measurements are distributed ac-

cording to a strictly increasing and continuous d.f. F such that
∫

x4dF(x) < ∞ and

F ′(F−1(pα)) > 0 as well as F ′(F−1(pβ )) > 0.

Let n∞ = n∞(µ,σ) and nm be as in Theorem 3.1 and Theorem 3.2. If Assumption (A) holds true,
nm is asymptotically normal,

√
m(nm−n∞) d→ N(0,η2), m→ ∞,

for η2 = gΣg′, where

g =
C(α,β )

(F−1(pα)−F−1(pβ ))3 · (−2σ
2,2σ

2,(F−1(pα)−F−1(pβ ))′

and

Σ =

Σαα Σαβ ζY α

Σαβ Σββ ζY β

ζY α ζY β ζYY
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with entries

Σαα =
pα(1− pα)

(F ′(F−1(pα)))2 , Σββ =
pβ (1− pβ )(

F ′(F−1(pβ ))
)2 ,

Σαβ =
pα(1− pβ )

(F ′(F−1(pα)))
(
F ′(F−1(pβ ))

)
ζY α =

E((Y1−µ)2−σ2)(pα −1(Y1 ≤ F−1(pα)))
F ′(F−1(pα))

,

ζY β =
E((Y1−µ)2−σ2)(pβ −1(Y1 ≤ F−1(pβ )))

F ′(F−1(pβ ))
,

ζYY = Var ((Y1−µ)2),

leading to

η
2 =

4σ4(Φ−1(α)−Φ−1(1−β ))4

(pα − pβ )6

[
4σ

4(Σαα −2Σαβ +Σββ )

+4σ
2(F−1(pα)−F−1(pβ ))(ζY β −ζY α)+ζYY (F−1(pα)−F−1(pβ ))2].

It is worth mentioning that the above formulas are more transparent than those obtained in [13].
Although it is interesting that the estimated sample size is asymptotically normal, the result of
limited value for practical purposes, since simulations have shown that the convergence is rather
slow. Consequently, it is not clear whether the construction of asymptotic confidence intervals
based on the above result would yield intervals with accurate coverage probabilities.

6. SIMULATIONS

We conducted small-scale simulations in order to investigate to some extent the accuracy of the
new sampling plans under some models. We were also interested in the effect of the method used
to calculate a sample quantile, as standard statistical software usually offers several methods.

As a kind of benchmark model, we selected the normal distribution with mean 220 and vari-
ance 4. The reason is that photovoltaic modules are often traded with a nominal power output
of 220 watts. The variance, 4, captures to some extent the variability observed in practice, al-
though that varies with technology. Two kinds of departures from the normality assumption were
studied: One-sided contaminations inducing skewness in the data samples and symmetric con-
taminations inducing, e.g., a different kurtosis. The amount of contamination to induce these
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effects was chosen as 20%, and the mean and the variance of the contaminating subpopulations
was chosen between 210−240 and 4−8, respectively.

For each parameter combination given by the sample size m of the historic data set and the
parameters of the above mixture model, we calculated Monte Carlo estimates for the expected
required sample size, E(nm), and the associated standard deviation of nm based on 50000 repli-
cations. In addition, the quartiles q0.25,q0.5 and q0.75 of the distribution of nm are reported which
enables us to judge the skewness of the distribution of nm. Finally, the expected critical value,
E(cm), and its standard deviation are provided.

6.1. One-Sided Contaminations. Data sets according to the following models were simulated:

Model 1: Xi ∼ F1 = N(220,4),

Model 2: Xi ∼ F2 = 0.1N(210,6)+0.9N(230,4),(12)

Model 3: Xi ∼ F3 = 0.9N(220,4)+0.1N(230,8).

The parameters were specified as AQL = 2%, RQL = 5% and α = β = 5%. Tables 1-3 show the
simulation results for these models.

TABLE 1. Characteristics of the distribution of nm and cm for Model 1

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 195.4 1144.0 30 61 143 19.4 16.9
250 79.1 77.5 37 58 94 15.3 5.6
500 74.9 44.5 46 64 91 15.5 3.9
5000 65.6 10.5 58 65 72 14.9 1.1
50000 64.8 3.2 63 65 67 14.9 0.3

TABLE 2. Characteristics of the distribution of nm and cm for Model 2

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 317.6 2568.7 44 98 231 38.2 34.3
250 123.7 133.9 54 89 148 30.6 11.8
500 118.6 72.7 70 101 145 31.4 8.1
5000 103.6 17.5 91 102 114 30.4 2.3
50000 102.5 5.5 99 102 106 30.4 0.7
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TABLE 3. Characteristics of the distribution of nm and cm for Model 3

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 679.1 5724.1 92 193 455 23.6 22.2
250 256.2 253.1 117 186 303 18.7 7.0
500 241.7 143.6 148 206 293 19.0 4.8
5000 211.3 33.7 188 208 232 18.2 1.4
50000 209.2 10.8 202 209 216 18.2 0.4

6.2. Symmetric Contaminations. Let us now study symmetric contaminations according to
the models

Model 4: Xi ∼ F4 = 0.2N(210,8)+0.6(220,4)+0.2N(230,8),(13)

Model 5: Xi ∼ F5 = 0.2N(200,8)+0.6(220,4)+0.2N(240,8),

Model 6: Xi ∼ F6 = 0.2N(210,4)+0.6(220,4)+0.2N(230,4),

Model 7: Xi ∼ F7 = 0.2N(200,4)+0.6(220,4)+0.2N(240,4).

Notice that in all models the observations have a mean of 220. In Model 4, we consider the
case that one fifth of the contaminated data have the mean 210, whereas another fifth scatters
around 230. The variance for these two subpopulations is 8. Model 6 is similar to Model 4
except that the variance is fixed at 4. In Models 5 and 7 the contaminating subpopulations have
means 200 and 240. The empirical results for these models are provided in Tables 4-7.

TABLE 4. Characteristics of the distribution of nm and cm for Model 4

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 624.8 23533.2 79 161 364 31.7 34.2
250 203.9 191.6 96 150 242 25.2 9.3
500 193.7 111.4 121 167 234 25.5 6.4
5000 169.2 26.3 150 167 185 24.5 1.8
50000 167.8 8.2 162 168 173 24.5 0.6

It is interesting to note that q0.5 for m = 250 is typically smaller then q0.5 for m = 100 since
the use of empirical distribution leads to rounding (discretion). Indeed, for a sample of size 250,
the 0.02-quantile is the 5-order statistics of the sample (250×0.02 = 5) and the 0.05-quantile is
the 13-order statistics of the sample (250×0.05 = 12.5 6= 13)
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TABLE 5. Characteristics of the distribution of nm and cm for Model 5

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 1951.6 22814.7 284 578 1319 55.9 52.9
250 727.9 677.7 347 539 872 44.6 16.3
500 705.7 405.9 438 606 849 45.5 11.5
5000 616.9 96.3 550 607 676 43.8 3.3
50000 608.6 29.6 588 608 629 43.6 1.0

TABLE 6. Characteristics of the distribution of nm and cm for Model 6

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 1023.9 19714.2 152 309 709 41.6 39.2
250 392.8 390.0 186 287 461 33.3 12.5
500 374.3 215.0 233 321 453 33.8 8.5
5000 327.3 51.6 291 322 358 32.5 2.4
50000 323.5 15.8 312 323 334 32.4 0.8

TABLE 7. Characteristics of the distribution of nm and cm for Model 7

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

100 3897.3 49612.1 572 1160 2643 76.7 72.8
250 1453.1 1435.4 686 1059 1718 60.8 22.8
500 1406.5 817.9 872 1201 1698 62.2 15.9
5000 1221.0 190.6 1085 1202 1337 59.7 4.5
50000 1204.8 58.5 1164 1204 1244 59.5 1.4

6.3. Effect of Quantile Algorithms. Statistical software such as R or SAS implements various
standard procedures to calculate sample quantiles. R implements nine algorithms discussed in
[5]. ALGORITHM 1 corresponds to the left inverse of the empirical distribution function, the
definition we use in this article, see (8). However, R’s default algorithm is ALGORITHM 7.
SAS’s PROC UNIVARIATE also provides several methods; the default is to use the average of
the npth and (np + 1)-th order statistic, if np is an integer, and the (bnpc+ 1)th order statistic,
otherwise, corresponding to ALGORITHM 2.

We used the parameters α = β = 0.05, AQL = 0.02 and RQL = 0.05 and simulated data
according to the model

Xi ∼ N(220,4), i = 1, . . . ,m.
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For each algorithm and sample size m = 100,250,500,5000, the same statistical quantities as
above were estimated using 50,000 simulation runs. For better comparison, for each algorithm
the same random numbers were used by initializing the random number generator using the
statement set.seed(17). The results are presented in Tables 8 and 9.

TABLE 8. Results for Algorithms 1-5

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

ALGORITHM 1
100 195.4 1144.0 30 61 143 19.4 16.9
250 79.1 77.5 37 58 94 15.3 5.6
500 74.9 44.5 46 64 91 15.5 3.9
5000 65.6 10.5 58 65 72 14.9 1.1

ALGORITHM 2
100 162.8 424.6 40 75 156 19.2 12.3
250 95.1 93.3 45 70 112 16.7 6.2
500 78.1 44.8 49 67 95 15.8 3.9
5000 65.9 10.5 59 65 72 15 1.1

ALGORITHM 3
100 195.4 1144.0 30 61 143 19.4 16.9
250 101.6 114.4 44 70 118 17.3 7.0
500 74.9 44.5 46 64 91 15.5 3.9
5000 65.6 10.5 58 65 72 14.9 1.1

ALGORITHM 4
100 195.4 1144.0 30 61 143 19.4 16.9
250 88.2 88.9 40 64 104 16.2 6.1
500 74.9 44.5 46 64 91 15.5 3.9
5000 65.6 10.5 58 65 72 14.9 1.1

ALGORITHM 5
100 162.8 424.6 40 75 156 19.2 12.3
250 95.1 93.3 45 70 112 16.7 6.2
500 78.1 44.8 49 67 95 15.8 3.9
5000 65.9 10.5 59 65 72 15 1.1

For ALGORITHM 1, we can see that the median q0.5 is close to 65 for small m but the standard
deviation of nm is very large. In general, results for ALGORITHMS 2–6 and 8–9 are rather close
to the results for ALGORITHM 1; in some cases even identical to the results for ALGORITHM

1. However, the results for ALGORITHM 7, which is used in R by default, are worse than the
results when using ALGORITHM 1. In particular, the median q0.5 is substantially larger than 65.
For m≥ 5000, there are no notable differences.
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TABLE 9. Results for Algorithms 6-9

m E(nm) sd(nm) q0.25 q0.50 q0.75 E(cm) sd(cm)

ALGORITHM 6
100 174 689.3 30 61 140 19.0 15.0
250 87.7 87.9 40 64 103 16.2 6.1
500 74.7 44.2 46 64 91 15.5 3.9
5000 65.5 10.5 58 65 72 14.9 1.1

ALGORITHM 7
100 301.6 1405.4 51 104 239 23.1 19.1
250 108.5 107 50 79 129 17.5 6.6
500 83.2 49.3 51 71 101 16.1 4.1
5000 66.2 10.6 59 65 73 15.0 1.1

ALGORITHM 8
100 157.1 437.8 36 69 147 18.9 12.5
250 92.0 90.1 43 68 109 16.5 6.1
500 76.8 44.3 48 66 93 15.7 3.8
5000 65.8 10.5 58 65 72 15.0 1.1

ALGORITHM 9
100 157.8 431.0 37 71 149 18.9 12.4
250 92.7 90.7 44 68 110 16.5 6.1
500 77.1 44.4 48 66 94 15.7 3.8
5000 65.8 10.5 58 65 72 15.0 1.1

7. DISCUSSION

Sampling plans have been proposed for variables sampling when the true but unknown dis-
tribution is completely unknown. These plans require additional historic sampling information,
which is usually available in photovoltaics, the key area of application we have in mind where
the methods are already in active use. Our theoretical results show that the proposed sampling
plans are consistent and asymptotically optimal under very weak assumptions. Moreover, the
estimated sample size satisfies a central limit theorem. Whether or not those results remain valid
when the measurements are dependent is still an open issue. However, our results do not re-
quire independence of the historic sample, the control measurements and the shipment. Indeed,
any kind of dependence between the samples is allowed. Hence our results are valid both when
drawing randomly the control measurements from the shipment and when using observations
independent from the shipment, which is, e.g., the case when the modules used for the control
measurements are not returned to the customer.



20 PEPELYSHEV, MEISEN AND STELAND

Our simulations indicate, firstly, that the presented methodology provides accurate sampling
plans for a wide range of distributions, provided the size of the historic data set is sufficiently
large. Otherwise, the estimated sample size is affected by a substantially large variance which
hinders practical application. Here further research is in order to develop procedures with re-
duced variability, which would lead to improved sampling plans which can be used for smaller
historic data sets.

The simulation study on the effect of the algorithm used to calculate sample quantiles reveals
a striking and unexpected strong effect for small sample sizes. All algorithms estimate quantiles
by calculating a function of at most two successive order statistics, i.e. they perform a smoothing
operation in some cases. The effect on the results is surprisingly strong and points to the con-
jecture that, in general, smoothing may lead to better sampling plans. Again, future research is
in order to reveal to which extent improved sampling plans can be constructed by using refined
quantile estimation algorithms based on smoothing techniques.

The authors acknowledge financial support from the German Federal Ministery of the Envi-
ronment, Nature Conservation and Nuclear Safety (grant no. 0325226).

APPENDIX: PROOFS

In this mathematical appendix, we use the following notations. For a function f defined on
some subset of the p-dimensional Euclidean space Rp, ḟ denotes the gradient of f . When there
is no danger of confusion, we identify column and row vectors. The symbol P→ denotes conver-
gence in probability and d→ the convergence in distribution of a sequence of random variables
and random vectors. For brevity of presentation, we use the stochastic o and O symbols: oP(1)
stands for a random sequence Rn with Rn

P→ 0, as n→ ∞, whereas OP(1) denotes a sequence
Rn such that for any ε > 0 one may find a constant C with P(|Rn| > C) < ε for all n. As well
known, Rn = OP(1) holds true, if Rn converges in distribution. We also frequently use rules such
as OP(1) ·o(1) = oP(1).

We need the following auxiliary results on the Bahadur representation of sample quantiles, a
classical result dating back to [2] and [6], which in turn implies their joint asymptotic normality.
For the reader’s convenience, we provide those results in some detail.

(i) Let p ∈ (0,1) and suppose F ′(F−1(p)) > 0. Then

F−1
m (p) = F−1(p)+

F(F−1(p))−Fm(F−1(p))
F ′(F−1(p))

+oP(m−1/2).
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(ii) Suppose 0 < p1 < · · ·< pk < 1 and F ′(F−1(pi)) > 0 for i = 1, . . . ,k. Then

√
m(F−1

m (p1)−F−1(p1), . . . ,F−1
m (pk)−F−1(pk))

d→ N(0,Sk),

where Sk = (si j) is a symmetric k× k matrix with entries

si j =
pi(1− pi)

F ′(F−1(pi))
,

for 1≤ i, j ≤ k.

�

Proof. (Theorem 3.2)

To prove the assertion, we follow arguments used in [13]. Straightforward algebra leads to

Tn > c ⇔
√

n
(

X ′n−µ

σ
+T1(n)+T2(n)−T3(n)

)
> c+

√
n(F−1

m (p)−Y m)
Sm

where

T1(n) =
X ′n−µ

σ
· σ −Sm

Sm
,

T2(n) =
F−1

m (p)−F−1(p)
Sm

,

T3(n) =
Y m−µ

Sm
.

The assertion follows, if we show that

δn(p) =
√

n(T1(n)+T2(n)−T3(n)) = oP(1),

as n→ ∞. Clearly,
√

nT1(n) = oP(1) by Slutzky’s lemma, since
√

n(X ′n− µ)/σ
d→ N(0,1), as

m→ ∞, and (σ −Sm)/σ
P→ 0, as n→ ∞. Next notice that

√
nT2(n) =

1
Sm

√
n√
m
√

m(F−1
m (p)−F−1(p)).
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The first factor converges to 1/σ , in probability, the second one is o(1) by Assumption (A)

and the third factor is asymptotically normal by Theorem 7, as m→ ∞. Thus, T2(n) = oP(1).

Similarly, we have
√

nT3(n) =
√

n√
m

σ

Sm

√
mY m−µ

σ
= oP(1) by Assumption (A). Let us now check

the approximation for P(Tn > c). Clearly,

Un =
√

n(X ′n−µ)/σ +δn(p) d→ N(0,1),

as n→ ∞. This implies that supz∈R |P(Un ≤ z)−Φ(z)| = o(1), by virtue of Glivenko-Cantelli

theorem, which completes the proof, since

|P(Tn > c)−[1−Φ(c+
√

n(F−1
m (p)−Y m))]|

= |P(Un > c)− [1−Φ(c+
√

n(F−1
m (p)−Y m))]|

≤ sup
z∈R
|P(Un > z)− [1−Φ(z)]|= o(1).

� �

Proof. (Theorem 3.2)

Obviously,
nm

n∞(µ,σ)
=

S2
m

σ2
(F−1(AQL)−F−1(RQL))2

(F−1
m (AQL)−F−1

m (RQL))2
.

The first factor on the right-hand side converges to 1, almost surely, as m→ ∞, as well as the

second one, since F−1
m (AQL)−F−1

m (RQL)→ F−1(AQL)−F−1(RQL), almost surely, as m→∞.

To show the second assertion, recall

cm = Φ
−1(α)−

√
n(F−1

m (AQL)−Y m)
Sm

,

c(µ,σ) = Φ
−1(α)−

√
n(F−1(AQL)−µ)

σ
,
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and notice that

cm− c(µ,σ) =
σ

Sm
Wn,m,

where

Wn,m =
[
−
√

n(F−1
m (AQL)−Y m)

σ
+
√

n(F−1(AQL)−µ)
σ

Sm

σ

]
.

Clearly, σ/Sm = 1 + (σ − Sm)/Sm → 1, as m→ ∞, a.s. Thus, it suffices to show that Wn,m is

oP(1). Using Sm/σ = 1+(Sm−σ)/σ , we see that the second summand of Wn,m can be written

as
√

n(F−1(AQL)−µ)
σ

+
F−1(AQL)−µ

σ

√
n

Sm−σ

σ
.

Rearranging terms, we see that Wn,m can be written as√
n
m

[
−
√

m
F−1

m (AQL)−F−1(AQL)
σ

+
√

m
Y m−µ

σ
+

F−1(AQL)−µ

σ

√
m

Sm−σ

σ
.

]
By Theorem 7 (ii),

√
m(F−1

m (AQL)−F−1(AQL)) = OP(1).

Further, since EY 4
1 < ∞ by assumption, we also have

√
m(Y m−µ) = OP(1) and

√
m(Sm−σ) = OP(1),

as m→ ∞; for the second statistic also confer the proof of Theorem 5. Since by Assumption (A)

n/m = o(1), as n,m→∞, we obtain Wn,m = oP(1) follows, which completes the proof. � �

Proof. (Theorem 5)

For brevity of notation, we put pα = AQL and pβ = RQL. The Bahadur representation yields for

p ∈ {pα , pβ}

√
m[F−1

m (p)−F−1(p)] =
1√
m

m

∑
i=1

p−1(Yi ≤ F−1(p))
F ′(F−1(p))

+oP(1).
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Further, with Ỹi = Yi−µ and Ỹ = m−1
∑

m
i=1 Ỹi we obtain the asymptotic linearization

1√
m

m

∑
i=1

[(Yi−Y )2−σ
2] =

1√
m

m

∑
i=1

(Ỹ 2
i −σ

2)−2Ỹ
√

mỸ +
√

m(Ỹ )2

=
1√
m

m

∑
i=1

(Ỹ 2
i −σ

2)+oP(1),

since
√

mỸ = OP(1) and Ỹ = oP(1), which, of course, carries over to
√

m(S2
m−σ2). This gives

Um =
√

m


F−1

m (pα)−F−1(pα)

F−1
m (pβ )−F−1(pβ )

S2
m−σ2

=
1√
m

m

∑
i=1

Zi +oP(1),

where for i = 1, . . . ,m

Zi =


(pα −1(Yi ≤ F−1(pα)))/F ′(F−1(pα))

(pβ −1(Yi ≤ F−1(pβ )))/F ′(F−1(pβ ))

(Yi−µ)2−σ2

 .

Notice that Z1, . . . ,Zm are i.i.d. with a finite second moment. Thus, an application of the multi-

variate central limit theorem yields

Um
d→U ∼ N(0,Σ), with Σ = E(Z2

1) =


Σαα Σαβ ζY α

Σαβ Σββ ζY β

ζY α ζY β ζYY

 ,

as m→ ∞, where the entries are as given in the theorem. Now consider

√
m(nm−n∞) =

√
m

(
S2

m ·
(
Φ−1(α)−Φ−1(1−β )

)2(
F−1

m (pα)−F−1
m (pβ )

)2

−
σ2 ·

(
Φ−1(α)−Φ−1(1−β )

)2(
F−1(pα)−F−1(pβ )

)2

)
.

(14)
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Observe that we may write

√
m(nm−n∞) =

√
m[g(F−1

m (pα),F−1
m (pβ ),S2

m)−g(F−1(pα),F−1(pβ ),σ2)]

where the function g : D→ R, D = {(x,y,z) ∈ R3 : x 6= y}, is given by

g(x,y,z) = C(α,β ) · z
(x− y)2 , C(α,β ) =

(
Φ
−1(α)−Φ

−1(1−β )
)2

for (x,y,z) ∈ D. The function g is differentiable with

ġ(x,y,z) = C(α,β )(−2z(x− y)−3,2z(x− y)−3,(x− y)−2),

such that

g = ġ(F−1(pα),F−1(pβ ),σ2)

=
C(α,β )

(F−1(pα)−F−1(pβ ))3 · (−2σ
2,2σ

2,(F−1(pα)−F−1(pβ )).

The delta method now implies that

√
m(nm−n∞) d→ gU ∼ N(0,η2),

as m→ ∞, where

η
2 = gΣg′.

This completes the proof. � �
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