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Abstract
The evaluation of produced items at the time of delivery is, in practice, usually amended

by at least one inspection at later time points. We extend the methodology of acceptance
sampling for variables for arbitrary unknown distributions when additional sampling infor-
mation is available to such settings. Based on appropriate approximations of the operating
characteristic, we derive new acceptance sampling plans that control the overall operating
characteristic. The results cover the case of independent sampling as well as the case of
dependent sampling. In particular, we study a modified panel sampling design and the case
of spatial batch sampling. The latter is advisable in photovoltaic field monitoring studies,
since it allows to detect and analyze local clusters of degraded or damaged modules. Some
finite sample properties are examined by a simulation study, focusing on the accuracy of
estimation.

Keywords: Acceptance sampling, dependence, highdimensional data, quality control,
renewable energies, sampling design

1 Introduction
The acceptance sampling problem deals with the construction of sampling plans for inspec-
tion, in order to decide, using a minimal number of measurements, whether a lot (or ship-
ment) of produced items should be accepted or rejected. Our approach is motivated by
applications in photovoltaics, where the distribution of the relevant quality features, in par-
ticular the power output of solar panels, is typically non-normal, unknown and cannot be
captured appropriately by parametric models. However, in photovoltaics additional mea-
surements from the production line are available and can be used to construct acceptance
sampling plans.
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Let X represent a control measurement of produced item, with distribution function F
with a finite fourth moment, e.g. the power output of a photovoltaic module. It is classified
as non-conforming, defective or out-of-spec, if X ≤ τ , where τ is a (one-sided) specification
limit, usually defined as τ = µ∗(1− ε), where µ∗ is the target (or nominal) mean and ε ∈
(0,1) the tolerance. If there were no randomness, X = µ , where µ = E(X) is the true mean
of X . Then items are non-conforming if µ − τ ≤ 0 and, clearly, we should reject the lot,
if and only if µ − τ ≤ 0. But if the distribution of X is not degenerated, it is reasonable to
replace µ by its unbiased canonical estimator µ̂ = X to form a decision rule, and thus to
reject the lot if X− τ ≤ c, where the critical value c > 0 accounts for the estimation error.

The fraction of non-conforming (out-of-spec) modules (or items) corresponding to the
above definition is then given by

p = P(X1 ≤ τ) = F(τ).

It is usually regarded as the quantity of interest in quality control, although it makes no
assertion about how far away from the specification the non-conforming items are. However,
it is worth mentioning that the fraction of non-conforming modules is directly related to
the resulting costs, since it determines the number of modules one has to repair or replace
in case of a total inspection. For these reasons, one aims at the determination of control
procedures that allow to infer whether the fraction p, also called quality level, is acceptable,
i.e. p < AQL, or not, i.e. p > RQL. Here 0 < AQL < RQL < 1 denote the acceptable qualilty
limit (AQL) and the rejectable quality limit (RQL).

It is known that the probability of acceptance for the above rule based on X − τ is a
function of the fraction defectives p, but it depends on the unknown distribution function F .
In photovoltaics and presumably other areas as well, we are given additional data from the
production line that can be used to estimate unknowns.

In this paper, we construct sampling plans for the following situation: We assume that a
control sample is drawn at the time of delivery of the modules, i.e., when the modules are
new and unused, in order to ensure that shipments that are out-of-spec are identified and are
not delivered to the customers. The sampling plan used at this first stage of the procedure
is constructed using an additional sample from the production line, as discussed above. We
further assume that shipments that passed the first-stage acceptance sampling procedure are
inspected at a later time point, in order to check whether they are still in agreement with the
quality requirements after some defined period of operation. At this second stage a further
sample is taken, which is combined with the sample information from the first stage. This is
done in order to avoid that a close decision in favor of acceptance, i.e. when the first stage
control statistic has attained a value close to the critical value, results again in an acceptance
due to the fact that the second stage sample size is relatively small.

At first glance, it seems that the approach is a double sampling procedure. Recall that the
idea of double sampling plans is to give a questionable lot a second chance or, put differently,
allow for quick acceptance of very good lots: If the test statistic (say, e.g. the number of
defectives) is small, say smaller than a, one accepts, if it is too large, say larger than b, one
rejects, and if it is between a and b one draws a second sample and bases the decision on the
enlarged sample. Our approach is related in that we aim at re-using the sample information
from the first-stage control sample, but in our approach the second sample is not taken at
the same time instant, but at the inspection time, and the decision to accept or reject at the



first stage is only based on the first sample. Indeed, we have in mind that there may be a
substantial time lag between the two stages.

The fact that in practice one prefers to take repeated measures at inspection time, i.e. of
those items already selected, complicates the design of appropriate procedures, since now
the samples at different time points are not independent. Thus, we extent the required theo-
retical results to the case of dependent sampling under quite general conditions. We propose
a panel-based sampling scheme, where the items selected at the first stage form the basis of
the second stage sample, which is enlarged by new items if necessary. A further important
sampling design is spatial batch sampling. Here the batches of observations may be corre-
lated, for example since their spatial closeness implies that they carry the same factors that
may affect quality measurements. We show that our results are general enough to apply to
such a sampling design as well.

The rest of the paper is organized as follows. Section 2 discusses related work and appli-
cations. Section 3 introduces the two-stage acceptance sampling framework, in particular the
operating characteristic curves that define the statistical behaviour of our two-stage proce-
dure, and discusses our model for the two-stage setting with a control sample, an inspection
sample and an additional sample from the production line. In Section 4, we provide the
asymptotic results that allow us to construct valid acceptance sampling plans that control the
overall operating characteristic curve. Those results cover expansions of the control statis-
tics, their joint asymptotic normality and approximations of the operating characteristics.
We provide results for the case that the control sample and the inspection sample are inde-
pendent as well as for the more general and realistic case that the samples are dependent.
Computational issues are discussed in Section 5. Lastly, Section 6 presents results from a
simulation study.

2 Preliminaries

2.1 Related work
The acceptance sampling problem dates back to the seminal contributions of Dodge and has
been studied since then to some extent. For a general overview of classical procedures and
their implementations in standards we refer to recent monograph Schilling and Neubauer
(2009). For the Gaussian case, optimal plans have been constructed by Liebermann and
Resnikoff (1955), see also Brun-Suhr and Krumbholz (1991), Feldmann and Krumbholz
(2002), where the latter paper studies double sampling plans for normal and exponential
data, and the references given there. Their lack of robustness with respect to departures from
normality has been discussed in Kössler and Lenz (1997). Kössler (1995) used a Pareto-type
tail approximation of the operating characteristic combined with maximum likelihood esti-
mation, in order to estimate the fraction of defectives and then constructed sampling plans
using the asymptotic distribution of that estimate, when the lot is accepted if the estimated
fraction of defectives is small enough. The methods works, if the tails are not too short. Since
in industrial applications large production lots are usually classified in classes, the case of
non-normal but compactly supported distributions deserves attention. For such distributions,
approximations based on the asymptotic normality of sample means are a convenient and
powerful tool for the construction of sampling plans, having in mind that t-type statistics are



a natural choice to decide in favor of acceptance or rejection of a lot, as discussed above.
Thus, recent works focused on t-type test statistics resembling the statistic used by the opti-
mal procedure under normality.

Sampling plans for variables inspection when the underlying quality variable has an ar-
bitrary continuous distribution with finite fourth moment and the related estimation theory
based on the sample quantile function of an additional sample has been studied in Steland
and Zähle (2009) employing empirical process theory. For historic samples, i.e. samples
having the same distribution as the control sample, a simplified proof using the Bahadur
representation can be found in Meisen et al. (2012). In the present work, it is shown that
this method of proof extends to the case of a difference in location between the additional
sample and the control sample as studied in Steland and Zähle (2009). Further results and
discussions on acceptance sampling for photovoltaic data and applications can be found in
Herrmann et al. (2010). Herrmann and Steland (2010) have shown that the accuracy of such
acceptance sampling plans using additional samples from the production line can be substan-
tially improved by using smooth quantile estimators such as numerically inverted integrated
cross-validated kernel density estimators. The construction of procedures using the singu-
lar spectral analysis (SSA) approach with adaptively estimated parameters has been recently
studied by Golyandina et al. (2012). Bernstein-Durrmeyer polynomial estimators are well
known as a general purpose approach to estimation that provides quite smooth estimators.
The relevant theory as well as their application to the construction of acceptance sampling
plans with one-sided specification limits has been investigated in Pepelyshev et al. (2013).
The extension of the methodology to two-sided specification limits and numerical results
focusing on photovoltaic applications can be found in Avellan et al. (2013).

2.2 Applications in photovoltaics
The quality control of photovoltaic systems has become a key application area for recent
developments and extensions of the acceptance sampling methodology, although the results
can certainly be adopted to many other areas in industry.

The production of solar panels has become a highly complex high-throughput production
process. Today’s cell technologies rely on sophisticated solar cell designs. A solar cell can
be regarded as a stack of thin layers, in order to trap as many photons as possible, transform
them into electron-hole pairs and then ease the electrons’ movement through the cell to the
wires. Anti-reflective coatings of the glass covering have been introduced recently, in order
to maximize the amount of sunlight trapped by the solar cells by channelling the photons
to the lower layers of the cell. Optical filters are used in order to ensure that only those
wavelengths pass that can be processed by the semiconductor to form electron-hole pairs.
Let us briefly recall how a solar cell works: The p-type silicon layer consists of silicon,
which has four electrons, doped with a compound (such as Phosphorous) that contains one
more valence electron, such that this layer is positively charged. The n-type silicon layer is
silicon doped with compounds (such as Boron) having one less valence electron than silicon,
such that only three electrons are available for binding with four adjacent silicon atoms.
Thus, the n-type layer is negatively charged. An incomplete bond (hole) of the n-type layer
can attract an electron to fill the hole, in which case the hole moves. At the np-junction
where both layers meet, electrons from the n-type layer being freed by the photons’ energy



move to the p-layer and from there to the back contact, and the corresponding holes move to
the contact grid at the top of the cell. This result in a current I. Combined with the internal
electrical field of the cell due to the differently charged p- and n-silicon layers leads to power
(P =UI), which can be used by an external load attached to the cell.

Each layer of a cell makes use of specific physical and chemical properties of the base
material and the added compounds. In a multijunction (tandem) design two cells are mechan-
ically stacked on top of each other. The second cell at the bottom absorbs the higher energy
photons not absorbed by the top cell. Such designs can increase the efficiency substantially.
The physical and chemical interaction of those materials and particles is a complex dynamic
process driven by the sun’s irradiance, the associated heat and the weather conditions that
may range from extreme cold to extreme heat. Even in the absence of manufacturing faults,
these facts cause serious changes of the physical and chemical properties due to ageing, and,
as a consequence, also of the electrical properties of a solar cell, leading to what could be
called degradation by design.

Manufacturing faults add to those unavoidable sources of degradation. For example,
even minor defects in the encapsulation of a PV module may result in leakage after a couple
of years, thus leading to internal corrosion and other effects that degrade or even destroy the
module. Micro cracks in the crystalline semiconductor arising by improper handling of the
modules at the production line, stress during transport to the site of construction or improper
handling during assembly of the photovoltaic system, are invisible by eye but visible in elec-
tro luminescence (EL) images. Usually they have no effect on the electrical characteristics.
However, it is conjectured that such micro cracks could have serious impact on long-term
degradation and result in failures after several years of operation. As a consequence, in-
surance companies routinely make EL images from insured lots or systems and are highly
interested in the long-term influence of micro cracks. Antireflective coatings have been
shown experimentally to degrade after damp-heat tests leading to a loss of power. Driven by
the high potential between the cell’s surface and the ground, a likely source of potential in-
duced degradation (PID) is the wandering of Na+ ions from the glass surface trough the cell
to the np-junction, where they short-circuit the emitter. The fact that the emerging markets
for photovoltaics are in countries such as India or Saudi Arabia, the degradation of the glass
surface due to sand is an important issue for the reliability of PV systems.

As a consequence, there is a need for proper inspection plans that combine available
information from the production line, quality assessments and audits at the time of delivery
and construction of the solar systems and later inspections.

3 Method

3.1 Two-stage acceptance sampling
To proceed, let us fix some notions more rigorously. Let Tn be a statistic (decision function)
depending on a sample X1, . . . ,Xn constructed in such a way that large values of Xn − τ

indicate that the lot should be accepted. A pair (n,c) ∈ N× [0,∞) is called a (acceptance)
sampling plan, if one draws a sample of n observations and accepts the lot if Xn− τ > c.



Then the probability that the lot is accepted,

OC(p) = P(Tn > c|p), p ∈ [0,1],

is called operating characteristic. Here P(•|p) indicates that the probability is calculated
under the assumption that the true fraction of non-conforming items equals p. Given spec-
ifications of the AQL and RQL and error probabilities α and β , a sampling plan is called
valid, if

OC(p)≥ 1−α, for all p≤ AQL, (1)

and
OC(p)≤ β , for all p≥ RQL. (2)

In this article, we consider two-stage acceptance procedures where a lot is examined at
two time points. At time t1, usually the time of production, delivery or construction of the
system that uses the delivered items (PV modules), a control sample is taken, in order to
decide whether the lot or shipment can be accepted. If the lot is rejected, we stop. If the lot
is accepted, one proceeds and at time instant t2 the system is inspected again. One applies
a further acceptance sampling plan, based on a an inspection sample, in order to conclude
whether the shipment is still in agreement with the specifications.

Let us denote the test statistic used at time ti using a sampling plan (ni,ci) by Tni = Tni,i,
i = 1,2. Notice that here and in what follows, with some abuse of usual notation, we indicate
the dependence on ni by n, in order to keep notation simple and clean; this will cause neither
confusion nor conflict.

Then the corresponding operating characteristics are given by

OC1(p) = P(Tn1 > c1|p), p ∈ [0,1],

and, since the sampling plan (n2,c2) is constructed given Tn1 > c1,

OC2(p) = P(Tn2 > c2|Tn1 > c1, p), p ∈ [0,1].

Since a lot is accepted if and only if it is accepted at stage 1 and stage 2, the overall operating
characteristic, OC(p) = P(’lot acceptance’|p), is given by

OC(p) = OC1(p)OC2(p), p ∈ [0,1]. (3)

Of course, one may design the procedure such that at both stages the operating character-
istics are valid for the same error probabilities. However, then one cannot control the error
probabilities of the overall procedure, since its operating characteristic is given by (3).

Thus, we propose to design the procedure by controlling the overall operating character-
istics. This means, the stage-wise sampling plans are determined in such a way that both of
them ensure (1) and (2) for stage-specific error probabilities α1,β1 and α2,β2, i.e.

OCi(p)≥ 1−αi, p≤ AQL, (i = 1,2), (4)

and
OCi(p)≤ βi, p≤ RQL, (i = 1,2). (5)



If (4) and (5) can be ensured with equality for p ∈ {AQL,RQL}, then we obtain

OC(AQL) = (1−α1)(1−α2), OC(RQL) = β1β2

for the overall OC curve. If we want that it represents an (overall) valid acceptance sampling
plan, i.e.

OC(p)≥ 1−α, p≤ AQL, OC(p)≤ β , p≥ RQL, (6)

for given global error probabilities α and β , we have to design the procedures at both stages
appropriately, preferably such that (6) holds. Treating the producer risk and the consumer
risk symmetrically imposes the constraints

α1 = β1, α2 = β2,

such that it remains to select α1 and α2 in such a way that the resulting procedures guarantees
a valid overall sampling plan. For example, if one additionally imposes the constraint α1 =
α2, one obtains a valid (overall) acceptance sampling plan, if (α1,β1) is selected such that
(1−α1)

2 = 1−α,β 2
1 = β . If now the global error probabilities α and β are given and

one puts α2 = α1 = 1−
√

1−α and β1 = β2 =
√

β , then (6) holds with equalities, but the
stage-wise consumer risks β1,β2 may be too high in practice – observe that

√
0.1≈ 0.31623.

Another approach is to use plans with α1 < α2, such that the procedure is, in terms of the
producer risk, more restrictive at the first stage than at the second stage. In the simulations,
we specified α(= 0.1) and α1, determined the corresponding α2, i.e. α2 = 1− 1−α

1−α1
, and

put βi = αi, i = 1,2,. This means, at each stage producer and consumer risks are symmetric.
As a consequence, the procedure will work on a small global consumer risk, since β = β1β2
with β1,β2 ≤ α1. For example, the choices α = 0.1,α1 = 0.03 lead to α2 = β2 ≈ 0.072 such
that β ≈ 0.00216, yielding a valid acceptance sampling plan

3.2 A two-stage procedure using additional data
We assume that we are given an additional data set of size m, usually quite large, consisting
of independent and identically distributed measurements,

X0,X01, . . . ,X0m
i.i.d.∼ F0,

sampled at time t0 < t1, with

mean µ0 = E(X0) and variance σ
2
0 = Var(X0),

which can be used for the construction of the decision procedures. Recalling from our above
discussion that those additional measurements usually represent historic data or are taken
using a different measurement system, we allow for difference in location with respect to the
independent and identically distributed control measurements,

X1,X11, . . . ,X1n1

i.i.d.∼ F1,

taken at time instant t1. At the inspection time point t2, we have additional measurements

X2,X21, . . . ,X2n2

i.i.d.∼ F2.



Here we shall allow for a degradation effect leading to smaller measurements. Concretely,
our distributional model relating the marginal distributions of the three samples is now as
follows.

X ji ∼


F (•−∆) , j = 0,
F(•), j = 1,
F
( •

d

)
, j = 2.

(7)

for constants ∆ ∈ R and 0 < d < ∞. Equivalently, in terms of equality in distribution,

X0
d
= ∆+X1,

X1 ∼ F,

X2
d
= dX1.

The constant d determines the degree of degradation (if d < 1) and is assumed to be known.
We work with a simple degradation model, since in photovoltaics there is not yet enough
knowledge about the degradation of photovoltaic modules, which would justify to go beyond
the assumption that degradation acts like a damping factor on the power output measurement.
We also assume that d is known, since even the estimation of the mean yearly degradation
is a difficult practical problem and requires large data sets over long time periods, such it
would be not realistic to estimate d within our framework.

Further, we may and shall assume that

F(x) = G
(

x−µ

σ

)
, x ∈ R,

for some fixed but unknown d.f. G with
∫

xdG(x) = 0 and
∫

x2dG(x) = 1, such that

µ = E(X1), σ
2 = Var(X1),

are the mean and the variance of the control measurements taken at time t1.
The two-stage acceptance sampling procedure to be studied is now as follows. At stage

1, i.e. at time t1, based on a sampling plan (n1,c1) we accept the lot or shipment, if

Tn1 =
√

n1
X1− τ

Sm
> c1, (8)

where X1 =
1
n1

∑
n1
i=1 X1i is the average of the observations taken at time t1 and

Sm =

√
1

m−1

m

∑
i=1

(X0i−X0)2

is the sample standard deviation calculated from the observation taken at time t0. It is worth
mentioning that standardizing with the sample standard deviation calculated from the time t0
measurements is crucial; indeed, Sm can not be replace by, say, σ̂1 = (n1−1)−1

∑
ni
j=1(X1 j−

X i)
2.
If the lot is accepted at time t1, we draw the additional observations X21, . . . ,X2n2 for

inspection and calculate the corresponding statistic

Tn2 =
√

n2
DX2− τ

Sm
,



where D = 1/d and X2 =
1
n2

∑
n2
i=1 X2i. At inspection time t2 the lot is accepted if

Tn1 +Tn2 > c2. (9)

Notice that here we aggregate the available information by summing up Tn1 and Tn2. The
rationale behind this rule is as follows. We reach the inspection time, only if we passed the
quality control at time t1. The value of the statistic Tn1 comprises the evidence in favor of
acceptance and rejection, respectively. But even if the lot is accepted, the decision could be
a close one, i.e. Tn1 > c1 but Tn1 ≈ c1. In such cases, the probability is relatively large that
the lot is accepted at the inspection time again, if one drops the information already obtained
at stage 1. Thus, it makes sense to aggregate all available information to come to a decision,
i.e. to take the sum of the statistics Tn1 and Tn2 and compare with a new critical value c2.

4 Approximations of the Operating Characteristics
In order to calculate concrete acceptance sampling plans, we need to calculate the true oper-
ating characteristics, which is impossible without knowing the true underlying distributions.
Thus, we shall derive appropriate approximations of the operating characteristics that will
allow us to construct asymptotically optimal sampling plans.

Let us introduce the following notations. The standardized arithmetic averages will be
denoted by

X∗i =
√

ni
X i−µ

σ
, i = 1,2.

Here and in what follows, we assume that D = 1, since otherwise one may replace the X2i by
DX2i. It turns out that the asymptotically optimal acceptance sampling plans depend on the
quantile function G−1(p) of the standardized observations

X∗i = (Xi−µ)/σ , i = 0,1.

Thus, we shall assume that we have an arbitrary consistent quantile estimator G−1
m (p) of

G−1(p) at our disposal. It will be calculated from the additional sample taken at time t0. We
only need the following regularity assumption.

Assumption Q: One of the following two conditions holds.

(i) G−1
m (p) is a quantile estimator of the quantile function G−1(p) of the standardized

measurements satisfying the central limit theorem

√
m(G−1

m (p)−G−1(p)) d→V,

as m→ ∞, for some random variable V .

(ii) F−1
m (p) is a quantile estimator of the quantile function F−1

0 (p) of the measurements
taken at time t0, satisfying the central limit theorem

√
m(F−1

m (p)−F−1
0 (p)) d→U,

as m→ ∞, for some random variable U .



Remark 1 Notice that under condition (ii) of Assumption Q, one may construct a quantile
estimator for G−1(p) by

G̃−1
m (p) :=

F−1
m (p)−µ0

σ0
,

if µ0 and σ0 are known, since the quantiles of F and G are related by

F−1(p) = µ +σG−1(p).

If µ and σ are unknown, one should take the estimator

G−1
m (p) :=

F−1
m (p)−X0

Sm
, (10)

where (X0,Sm) consistently estimates (µ0,σ0) under our assumption of an i.i.d. sample
X01, . . . ,X0m a with finite second moment.

Let us consider two examples.

Example 1 A natural candidate for F−1
m (p) is the corresponding sample quantile,

F̃−1
m (p) = X0,(dmpe), p ∈ (0,1),

where X0,(1) ≤ ·· · ≤ X0,(m) is the order statistic associated to X01, . . . ,X0m. However, it is
known that the sample quantiles perform poorly for the type of acceptance sampling plans
to be studied here, see Meisen et al. (2012).

Example 2 Suppose that the distribution of the measurements is concentrated on a finite in-
terval [a,b] that can be assumed to be [0,1]. The Bernstein-Durrmeyer polynomial estimator
of degree N ∈ N for F−1

0 (p) is then defined as

F−1
m,N(p) = (N +1)

N

∑
i=0

aiB
(N)
i (p), p ∈ (0,1),

with coefficients

ai =
∫ 1

0
F̃−1

m (u)BN
i (u)du, where B(N)

i (x) =
(

N
i

)
xi(1− x)N−i

for i = 0, . . . ,N are the Bernstein polynomials. In Pepelyshev et al. (2013) it has been shown
that F̂−1

m,N(p) is consistent in the MSE and MISE sense and almost attains the optimal para-
metric rate of convergence if F−1

0 is smooth. The degree N can be chosen in a data-adaptive
way by controlling the number of modes of the density associated to the estimator as well as
the closeness of the associated estimator of the distribution function F̂m,N(x) in the sense that
the maximal distance between F̂m,N(F̂−1

m,N̂
(x)) and the identity function i(x) = x is uniformly

less or equal to 1/Rm where Rm = 2
√

m/
√

2loglogm; for details of the algorithm leading
to the estimate N̂ we refer to Pepelyshev et al. (2013). For the resulting estimate F̂−1

m,N̂
(p) an

uniform error bound can be established,

sup
q
|F̂−1

m,N̂
(q)−F−1

0 (q)| ≤ 2
√

2loglogm/
√

m,

see Pepelyshev et al. (2013, Theorem 3.1).



Example 3 From previous studies it is known that quantile estimators obtained by (numer-
ically) inverting a kernel density estimator

f̂m(x) =
1

mh

n

∑
i=1

Kh(x−X0i), x ∈ R,

provide accurate results for sampling plan estimation, see Herrmann and Steland (2010).
Here K(•) is a regular kernel, usually chosen as a density with mean 0 and unit variance,
h > 0 the bandwidth and Kh(z) = K(z/h)/h, z ∈ R, its rescaled version. The associated
quantile estimator is obtained by solving for given p ∈ (0,1) the nonlinear equation

Fm(xp) =
∫ xp

−∞

f̂m(x)dx !
= p.

For a kernel density estimator one has to select the bandwidth h. If the resulting estimate
is consistent for f (x) for each x ∈ R, which requires to select h = hn such that h→ 0 and
nh→ ∞, it follows that the corresponding estimator of the distribution function, Fm(x) =∫ x
−∞

f̂m(u)du, x ∈ R, is consistent as well, see Glick (1974), if the kernel used for smoothing
is a density function.

In many cases, the central limit theorem for a quantile estimator, say, Q̂m(p), of a quan-
tile function F−1(p) can be strengthened to a functional version that considers the scaled
difference

√
m(Q̂m(p)−F−1(p)) as a function of p.

Assumption Q’: Assume that F−1
m (p) is a quantile estimator of the quantile function

F−1
0 (p), 0 < p < 1, satisfying

√
m(F−1

m (p)−F−1
0 (p)) d→F (p),

as m→ ∞, for some random process {F (p) : 0 < p < 1}, in the sense of weak convergence
of such stochastic processes indexed by the unit interval.

Assumption Q’ holds true for the sample quantiles F−1
m (p) as well as, for example, the

Bernstein-Durrmeyer estimator, if the underlying distribution function attains a positive den-
sity. For the latter results, further details and discussion, we refer to Pepelyshev et al. (2013).

Having defined the decision rules for acceptance and rejection at both stages by (8) and
(9), the overall OC curve is obviously given by

OC(p) = P(Tn1 > c1,Tn1 +Tn2 > c2|p), p ∈ [0,1].

Further, the operating characteristic of stage 2 is a conditional one and given by

OC2(p) = P(Tn1 +Tn2 > c2|Tn1 > c1, p), p ∈ [0,1].

Those probabilities cannot be calculated explicitly under the general assumptions of this
paper. Hence, we need appropriate approximations in order to construct valid sampling
plans.



4.1 Independent Sampling
The case of independent sampling is, of course, of some relevance. In particular, it covers
the case of destructive testing or, more generally, testing methods that may change the prop-
erties. Examples are accelerated heat-damp tests of PV modules. Let us assume that the
samples Xi1, . . . ,Xini , i = 1,2, are independent. Our OC curve approximations are based on
the following result, which provides expansions of the test statistics involving the quantile
estimates G−1

m (p).

Proposition 1 Under independent sampling, we have

Tn1 = X∗1−
√

n1G−1
m (p)+oP(1),

as n1→ ∞ and m/n1 = o(1), and

Tn2 = X∗2−
√

n2G−1
m (p)+oP(1),

as n2 → ∞ and m/n2 = o(1). If a quantile estimator F−1
m (p) of F−1

0 (p) is available, both
expansions still hold true with G−1

m (p) defined by (10).

In what follows, Φ(x) denotes the distribution function of the standard normal distribu-
tion. We obtain the following approximation of the overall OC curve. The approximation
holds in the following sense: We say A approximates An and write An ≈ A, if An = A+oP(1),
as min(n1,n2)→ ∞.

Theorem 1 Under independent sampling and Assumption Q we have

OC2(p)≈ 1√
2π

∫
c1+
√

n1G−1
m (p)

[
1−Φ(c2− z+(

√
n1 +
√

n2)G−1
m (p))

]
e−z2/2 dz

1−Φ(c1 +
√

n1G−1
m (p))

,

for any fixed p ∈ (0,1).

4.2 Dependent Sampling
If it is not necessary to rely on independent samples for quality control at time t0 and in-
spection at time t1, i.e. to test different modules at inspection, it is better to take the same
modules. This means, one should rely on a panel design, where at time t0 or t1 a random
sample from the lot is drawn, the so-called panel, and that panel is also analyzed at the time
of inspection, i.e. the modules are remeasured. To simplify the technical proofs, we shall
assume in the sequel that the panel is established at time t1 and that the sample taken at time
t0 is independent from the observations taken at later time points.

The control-inspection scheme studied in this paper aims at the minimization of the costs
of testing by aggregating available information. Therefore, the inspection sample should be
(and will be) considerably smaller than the first stage sample, i.e. n2 << n1, although it also
may happen occasionally that n2 > n1, since the sample sizes are random.

In order to deal with this issue, the following dependent sampling scheme is proposed.
If n2 < n1, one draws a subsample of size n2 from the items drawn at time t1 to obtain the
control sample of size n2. Those n2 items are remeasured at time instant t2 yielding the



sample X21, . . . ,X2n2 . Notice that for fixed i the measurements X1i and X2i are dependent,
since they are obtained from the same item (module). Thus, we are given a paired sample

(X1i,X2i), i = 1, . . . ,n2,

which has to be taken into account.
It remains to discuss how to proceed, if n2 > n1. Then one remeasures all n1 items already

sampled at time t1 yielding n1 paired observations (X1i,X2i), i = 1, . . . ,n1, and draws n2−n1
additional items from the lot.

As a consequence, n1 observations from the stage 2 sample are stochastically dependent
from the stage 1 observations, whereas the others are independent. In order to proceed, let
us assume that the sample sizes n1 and n2 satisfy

lim
n1

n2
= λ . (11)

Notice that

Cov(X∗1,X
∗
2) =

1
√

n1n2

n1

∑
i=1

n2

∑
j=1

Cor(X1i,X2 j) =

√
n1

n2
ρ
′,

where
ρ
′ = Cor(X1,X2) 6= 0.

Thus, if ρ ′ 6= 0, the approximation results of the previous subsection are no longer valid,
since even asymptotically X1 and X2 are correlated, and thus the standardized versions are
correlated as well under this condition.

The following results provide the extensions required to handle this case of dependent
sampling. Proposition 2 provides the asymptotic normality of the sample averages, which
share the possibly non-trivial covariance.

Proposition 2 Suppose that the above sampling scheme at stages 1 and 2 is applied and
assume that one of the following assumptions is satisfied.

(i) X01, . . . ,X0m is an i.i.d. sample with common distribution function F0(x) = F(x−∆)
and Assumption Q holds.

(ii) Assumption Q’ is satisfied.

Then we have (
X∗1
X∗2

)
d→ N

((
0
0

)
,Σ

)
,

as min(n1,n2)→ ∞ with n1/n2→ λ , where the asymptotic covariance matrix is given by

Σ =

(
1 ρ

ρ 1

)
,

with ρ =
√

λ Cor(X1,X2).

The following theorem now establishes expansions of the test statistics, which hold
jointly.



Theorem 2 Suppose that the above sampling scheme at stages 1 and 2 is applied and as-
sume that one of the following assumptions is satisfied.

(i) X01, . . . ,X0m is an i.i.d. sample with common distribution function F0(x) = F(x−∆)
and Assumption Q holds.

(ii) Assumption Q’ is satisfied.

Then we have (
Tn1
Tn2

)
=

(
X∗1
X∗2

)
−
( √

n1G−1
m (p)√

n2G−1
m (p)

)
+oP(1),

as min(n1,n2)→ ∞ with n1/n2→ ∞ and max(n1,n2)/m = o(1).

The approximation of the OC curve OC2(p) is now more involved. Recall at this point
the well known fact that for a random vector (X ,Y ) that is bivariate normal with mean vector
(µX ,µY )

′, variances σ2
X = σ2

Y = 1 and correlation ρXY , the conditional distribution of, say, Y
given X = z attains the Gaussian density

x 7→ 1√
2π(1−ρ2)

exp

− (x−ρz)2

2
√

1−ρ2
XY

 , x ∈ R.

The following theorem now provides us with the required approximation of the operating
characteristic for the second stage sampling plan. It will be established in the following
sense, slightly modified compared to the previous subsection: We say A approximates An and
write An ≈ A, if An = A+oP(1), as min(n1,n2)→∞ with n1/n2→ λ , max(n1,n2)/m = o(1)
and n1 ≥ n→ ∞.

Theorem 3 Suppose that the above sampling scheme at stages 1 and 2 is applied and as-
sume that one of the following assumptions is satisfied.

(i) X01, . . . ,X0m is an i.i.d. with common distribution function F0(x) and Assumption Q
holds.

(i) Assumption Q’ is satisfied.

If, additionally, |ρ| ≤ ρ < 1, then we have

OC2(p)≈ 1√
2π

∫
c1+
√

n1G−1
m (p)

[
1−Φ

(
c2−z+(

√
n1+
√

n2)G−1
m (p)−ρ̂z√

1−ρ̂2

)]
e−z2/2 dz

1−Φ(c1 +
√

n1G−1
m (p))

, (12)

where

ρ̂ =

√
n1

n2

γ̂

σ̂1σ̂2
with σ̂

2
j =

1
n

n

∑
i=1

(X ji−X i)
2, j = 1,2,

and

γ̂ =
1
n

n

∑
i=1

(X1i−X1)(X2i−X2).

The above result deserves some discussion.



Remark 2 Observe that the unknown correlation coefficient is estimated from n pairs (X1i,X2i),
i = 1, . . . ,n. Since the sampling plan (n2,c2) cannot be determined without an estimator ρ̂ ,
on should fix n≤ n1 and remeasure n items at inspection time t2, in order to estimate ρ .

Remark 3 The fact that the approximation also holds true under the general probabilistic
assumption Q’ points to the fact that the results generalize the acceptance sampling method-
ology to the case of dependent sampling, for example when it is not feasible to draw randomly
from the lot and instead one has to rely on consecutive produced items that are very likely to
be stochastically dependent due to the nature of the production process.

Remark 4 The condition (11) can be easily ensured by replacing n2 by n1/λ , i.e. put
n2(λ ) = n1/λ and determining λ such that a valid sampling plan (n2,c2) results. How-
ever, the procedure is not reformulated in this way for sake of clarity.

4.3 Sampling in spatial batches
In photovoltaic quality control, it is quite common to sample in spatial batches. Here one se-
lects randomly a solar panel from the photovoltaic system, usually arranged as a grid spread
out over a relatively large area. Then the selected module and b−1 neighbouring modules are
measured on site. Of course, observations from neighbouring modules are correlated, since
they share various factors that affect variables relevant for quality and reliability. Among
those are the frame on which they are installed, so that they share risk factors due to wrong
installation, the local climate within the area (wind and its direction that leads to stress due
to vibrations, see Assmus et al. (2011)), the wires as well as the inverter to which they are
connected. Further, one cannot assume that during installation the modules are randomly
spread over the area, so that their ordering may be the same as on the production line.

So let us assume that one substitutes ni by dni/beb and ci by the re-adjusted critical value
(see step 6 of the algorithm in Section 5. Thus, we may and will assume that

ni = rib, i = 1,2,

where b is the batch size and ri the number of randomly selected batches. Suppose that the
observations are arranged such that

(Xi1, . . . ,Xini) = (X (1)
1 , . . . ,X (1)

b , . . . ,X (r)
1 , . . . ,X (r)

b ),

where X ( j)
` is the `th observation from batch j, `= 1, . . . ,b, j = 1, . . . ,ri.

Let us assume the following spatial-temporal model:

Xi,(`−1)b+ j = µi +B`+ εi j,

for i = 1,2, `= 1, . . . ,r and j = 1, . . . ,b. Here {εi j : 1≤ j≤ b, i = 1,2} are i.i.d. (0,σ2
ε ) error

terms, {B` : `= 1, . . . ,r} are i.i.d. (0,σ2
B) random variables representing the batch effect. It

is assumed that {εi j} and {B`} are independent.
Then the covariance matrix of the random vector Xi = (Xi1, . . . ,X1ni) is given by

Cov(Xi) =
ri⊕

i=1

[σ2
BJb +σ

2
ε Ib],



for i = 1,2, where Jb denotes the (b× b)-matrix with entries 1 and Ib is the b-dimensional
identity matrix. Observing that

Cov(
√

n1X1,
√

n2X2) =
S

√
n1
√

n2

where S is the sum of all elements of Cov(X1), we obtain

Cov(
√

n1X1,
√

n2X2) =
r1b2σ2

B + r1bσ2
ε√

r1r2b
=

√
r1

r2
bσ

2
B +

√
r1

r2
σ

2
ε .

It can be shown that the method of proof used to show the above results extends to that
spatial batch sampling, if one additionally assumes that b is fixed and

lim
r1

r2
= r∗ > 0.

5 Computational aspects
It is worth discussing some computational aspects. We confine ourselves to the case of inde-
pendent sampling, since the modifications for the dependent case are then straightforward.

The calculation of the two-stage sampling plan is now as follows. At stage 1, one solves
the equations

OC1(AQL) = 1−α1, OC1(RQL) = β1,

leading to the explicit solutions

n1 =

⌈
(Φ−1(α1)−Φ−1(1−β1))

2

(G−1
m (AQL)−G−1

m (RQL))2

⌉
, (13)

c1 =−
√

n1

2
(G−1

m (AQL)+G−1
m (RQL)). (14)

The sampling plan (n2,c2) for stage 2 has to be determine such that

OC2(AQL) = 1−α2, OC2(RQL) = β1,

which is done by replacing OC2 by its approximation, thus leading us to the nonlinear equa-
tions

1√
2π

∫
c1+
√

n1G−1
m (AQL)

[
1−Φ(c2− z+(

√
n1 +
√

n2)G−1
m (AQL))

]
e−z2/2 dz

1−Φ(c1 +
√

n1G−1
m (AQL))

= 1−α2

and

1√
2π

∫
c1+
√

n1G−1
m (RQL)

[
1−Φ(c2− z+(

√
n1 +
√

n2)G−1
m (RQL))

]
e−z2/2 dz

1−Φ(c1 +
√

n1G−1
m (RQL))

= β2,

which have to be solved numerically. Notice that the integrals appearing at the left side also
have to be calculated numerically.

In order to calculate the sampling plan (n2,c2), the following straightforward algorithm
performed well and was used in the simulation study.

ALGORITHM:



1. Select ε > 0.

2. Calculate (n1,c1) using (13) and (14).

3. Perform a grid search minimization of the OC curve over (n,c)∈{(n′,c′) : c′= 1, . . . ,c∗(n′), n′=
1, . . . ,200}, where c∗(n′) = min{1≤ c′′ ≤ 60 : (OC(AQL)−(1−α2))

2+(OC(RQL)−
β2)

2 ≤ ε} for given n′. Denote the grid-minimizer by (n∗,c∗).

4. Use the grid-minimizer (n∗,c∗) as a starting value for numerically solving the nonlinear
equations up to an error bound ε for the sum of squared deviations from the target.
Denote the minimizer by (n∗2,c

∗
2).

5. Put n2 = dn2e.
6. For fixed n = n2 minimize numerically the nonlinear equations with respect to c2 up

to an error bound ε for the sum of squared deviations from the target. Denote the
minimizer by c∗2.

7. Output (n2,c2) = (n2,c∗2).

It turned out that the combination of a grid search to obtain starting values and a two-pass
successive invocation of a numerical optimizer to minimize with respect to the sample size
and the control limit in the first stage and, after rounding up the sample size, minimizing
with respect to the control limit results in a stable algorithm.

6 Simulations
The simulation study has been conducted, in order to get some insights into the final sam-
ple statistical properties of the procedures. It was designed to mimic certain distributional
settings that are of relevance in photovoltaic quality control.

It is known from previous studies that the standard deviation of the estimated sample
size is often quite high even when a large data set X01, . . . ,X0m can be used to estimate it, see
Meisen et al. (2012), Golyandina et al. (2012) and Pepelyshev et al. (2013). The question
arises how accurately the second stage sampling plan can be estimated, having in mind that
the estimated first stage sample size affects the operating characteristic at the second stage.

For the simulations the following parameters were used: α = β = 0.1 (global error prob-
abilities), AQL = 2% and RQL = 5%. The error probabilities α1 = β1 for the first stage
acceptance sampling procedure were selected from the set {0.03,0.05,0.07} and the corre-
sponding value α2 = 1− (1−α)/(1−α1) was then calculated for the second stage inspec-
tion, cf. our discussion in Section 3. The sample size m of the additional sample from the
production line was chosen as 250 and 500.

Data sets according to the following models were simulated:

Model 1: X0 ∼ F1 = N(220,4),

Model 2: X0 ∼ F2 = 0.9N(220,4)+0.1N(230,8).

Model 3: X0 ∼ F3 = 0.2N(200,4)+0.6N(220,4)+0.2N(230,8).

Model 4: X0 ∼ F4 = 0.2N(212,4)+0.6N(220,8)+0.2N(228,6).

The required quantiles for methods based on the kernel density estimator for the con-
struction of the sampling plans were estimated by numerically inverting an integrated kernel



density estimator f̂m(x) calculated from the standardized sample X∗01, . . . ,X
∗
0m. The following

methods of quantile estimation were used, where the first four approaches employ the kernel
estimator with different bandwidth selectors:

1. Biased cross-validated (BCV) bandwidth.

2. Sheather-Johnson bandwidth selection (SJ), Sheather and Jones (1991).

3. Golyandina-Pepeyshev-Steland method (GPS), Golyandina et al. (2012).

4. Indirect cross-validation (ICV), Savchuk et al. (2010).

5. Bernstein-Durrmeyer polynomial (BDP) quantile estimator, Pepelyshev et al. (2013).

The following tables summarize the simulation results. Each case was simulated using
10,000 repetitions.

Table 1 provides results for normally distributed measurements with mean 220 and vari-
ance 4. The results show that even for such small sample sizes as 250 and 500, respectively,
the second-stage sampling plan (n2,c2) can be estimated with comparable accuracy as the
first-stage plan. Further, it can be seen that the GPS bandwidth selector provides on average
the smallest sampling plan numbers n2 and the highest accuracy.

For Model 2, a mixture model where for 10% of the items the mean is reduced by
10 units, the situation is now different. Here biased cross-validation and indirect cross-
validation perform best and produce the most accurate estimates, see Table 2. Again, the
stage-two plan can be estimated with comparable accuracy.

Model 3 represents a symmetric distribution with two smaller subpopulations whose
mean is larger or smaller, such that there are notable local minima of the density between the
three corresponding local maxima. The results are given in Table 3. Whereas for Models 1,
2 and 4 the GDP method leads to larger expected sample sizes and larger standard deviations
than the other methods, it outperforms all other methods under Model 3, when m = 250.

Of considerable interest in photovoltaic applications, and presumable other areas as well,
is Model 4, a kind of head-and-shoulders distribution resulting in relatively short tails. The
results in Table 4 demonstrate that in this case the GPS method provides the best results in
all cases, both in the sense of smallest expected sample sizes for both stages and in the sense
of highest accuracy of estimation (i.e. smallest standard deviations).

7 Discussion
A sampling plan methodology for a control-inspection policy is established that allows for
independent as well as dependent sampling. Relying on a decision rule based on a t-type
test statistic, sampling plans are constructed based on quantile estimates calculated from an
additional sample taken from the production line. The new methodology applies to inde-
pendent samples as well as dependent ones, under general conditions. When aggregating
the available sampling information in order to minimize the required additional sampling
costs at inspection time, it turns out that the relevant operating characteristics are relatively
involved nonlinear equations that have to be solved numerically. Monte-Carlo simulations
show that the approach works well and that the second stage sampling plan can be estimated
with an accuracy that is comparable to the accuracy for the known formulas applicable for
the first stage sampling plan. It also turns out that there is no uniformly superior method of



Table 1: Characteristics of the sampling plans for Model 1
α1 α2 m Type E(n1) sd(n1) c1 sd(c1) E(n2) sd(n2) c2 sd(c2)
3% 7.22% 250 BCV 79.76 22.47 17.39 2.14 18.33 8.63 26.30 3.34

250 SJ 82.13 25.42 17.43 2.38 19.97 9.97 26.41 3.42
250 GPS 78.92 21.82 17.37 2.11 17.68 8.29 26.23 3.33
250 ICV 80.10 22.89 17.40 2.17 18.50 8.81 26.31 3.34
250 BDP 90.58 34.08 16.91 2.64 26.97 13.95 26.28 3.29

7% 3.23% 250 BCV 49.29 13.84 13.67 1.68 22.35 8.46 23.71 3.07
250 SJ 50.76 15.67 13.71 1.86 23.85 9.60 23.93 3.38
250 GPS 48.78 13.43 13.66 1.65 21.80 8.22 23.61 2.99
250 ICV 49.50 14.09 13.68 1.70 22.52 8.62 23.73 3.11
250 BDP 55.98 21.01 13.29 2.07 31.04 13.83 23.99 3.76

3% 7.22% 500 BCV 80.21 17.99 17.26 1.72 19.11 6.86 26.55 2.94
500 SJ 81.60 19.51 17.27 1.84 20.09 7.52 26.66 3.06
500 GPS 79.49 17.42 17.25 1.67 18.50 6.64 26.44 2.88
500 ICV 80.36 18.22 17.26 1.73 19.18 6.98 26.56 2.97
500 BDP 93.90 24.27 17.43 1.95 27.32 9.90 27.38 2.83

7% 3.23% 500 BCV 49.58 11.07 13.57 1.34 23.17 7.05 23.68 2.52
500 SJ 50.45 12.01 13.58 1.44 24.09 7.57 23.81 2.69
500 GPS 49.15 10.72 13.56 1.31 22.62 6.84 23.60 2.44
500 ICV 49.67 11.21 13.57 1.35 23.27 7.19 23.70 2.54
500 BDP 58.01 14.93 13.70 1.53 31.97 10.12 24.70 2.89

bandwidth selection when relying on quantile estimates using inverted kernel density esti-
mators. However, ICV as well as the GPS bandwidth selectors provide better results in many
cases than more classical approaches.

The extension of the acceptance sampling methodology to the case of L ≥ 2 number of
inspection time points, preferably allowing for dependent cluster sampling, requires further
investigation. Firstly, the question arises whether or not one should design such procedures
such that the overall type I and type II error rates are under control. Further, it remains an
open issue to which extent one should aggregate data and to which extent time effects can be
modelled stochastically. Lastly, for large L appropriate procedures could resemble sequential
(closed-end) procedures.

Having in mind that in many cases present day quality control is based on highdimen-
sional data arising from measurement curves and images such as IV curves or EL images
in photovoltaics, the extension of the acceptance sampling methodology to highdimensional
and functional data deserves future research efforts as well; a deaper discussion is beyond
the scope of the present article.



Table 2: Characteristics of the sampling plans for Model 2
α1 α2 m Type E(n1) sd(n1) c1 sd(c1) E(n2) sd(n2) c2 sd(c2)
3% 7.22% 250 BCV 281.52 88.60 21.80 2.45 115.68 46.15 29.34 2.28

250 SJ 296.12 94.82 22.07 2.60 126.44 45.39 29.92 2.71
250 GPS 297.60 97.68 22.06 2.63 128.48 48.30 30.38 2.82
250 ICV 274.44 83.41 21.67 2.33 111.32 39.88 30.22 2.50
250 BDP 320.28 123.21 21.35 3.20 136.48 57.84 29.55 1.97

7% 3.23% 250 BCV 173.44 54.63 17.11 1.93 110.88 38.94 31.64 3.62
250 SJ 182.56 58.42 17.33 2.04 118.28 38.59 32.22 3.66
250 GPS 183.32 60.02 17.32 2.06 122.88 42.15 32.34 3.74
250 ICV 169.20 51.33 17.01 1.83 108.20 33.66 31.42 3.30
250 BDP 197.52 75.82 16.77 2.51 129.72 50.85 31.20 4.59

3% 7.22% 500 BCV 280.24 56.48 21.94 2.04 116.00 26.61 28.84 2.82
500 SJ 289.00 61.28 22.14 2.19 122.44 30.35 28.62 2.08
500 GPS 283.32 62.64 22.02 2.14 118.40 30.42 28.49 2.09
500 ICV 276.88 53.26 21.86 1.99 114.52 23.33 28.37 2.13
500 BDP 331.44 91.83 22.40 2.73 138.20 42.49 30.36 3.29

7% 3.23% 500 BCV 172.84 34.83 17.23 1.60 110.52 21.92 31.89 2.96
500 SJ 178.12 37.56 17.38 1.71 115.16 25.58 32.14 3.19
500 GPS 174.68 38.62 17.29 1.68 113.04 29.44 31.68 2.84
500 ICV 170.68 32.78 17.16 1.56 108.96 20.69 31.78 2.89
500 BDP 204.36 56.50 17.59 2.14 133.32 35.27 32.30 3.34
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Appendix: Proofs
The results are obtained by refinements of the results obtained in Steland and Zähle (2009)
and Meisen et al. (2012) and their extension to the two-stage setup with possible dependent
samples. First, we need the two following auxiliary results, which are proved in Meisen et
al. (2012) for independent observations. However, it can be easily seen that the proofs work
under more general conditions.

Lemma 1 If X1,X2, . . . have mean µ , variance σ2 ∈ (0,∞) and satisfy a central limit theo-

rem, i.e.
√

n Xn−µ

σ

d→ N(0,1), as n→ ∞, then

Rn =
√

n
Xn−µ

σ

σ −Sm

Sm
= oP(1),



Table 3: Characteristics of the sampling plans for Model 3
α1 α2 m Type E(n1) sd(n1) c1 sd(c1) E(n2) sd(n2) c2 sd(c2)
3% 7.22% 250 BCV 206.12 78.11 26.99 4.46 75.92 33.60 29.05 2.57

250 SJ 210.84 78.68 27.26 4.55 77.44 34.14 30.39 2.96
250 GPS 203.44 75.73 26.86 4.26 72.64 33.43 29.36 2.99
250 ICV 202.96 76.32 26.83 4.36 74.12 33.60 29.57 3.01
250 BDP 171.00 66.69 23.82 3.70 58.76 29.80 29.15 2.07

7% 3.23% 250 BCV 127.16 48.05 21.20 3.50 73.36 35.32 33.94 2.66
250 SJ 129.96 48.50 21.40 3.57 75.60 35.86 33.73 2.48
250 GPS 125.36 46.58 21.09 3.33 70.88 34.31 33.98 2.63
250 ICV 125.12 47.01 21.07 3.42 72.44 36.28 34.05 2.31
250 BDP 105.64 41.11 18.73 2.90 58.64 28.75 32.19 3.20

3% 7.22% 500 BCV 190.80 58.17 26.28 3.54 68.00 25.37 28.45 2.04
500 SJ 191.68 60.03 26.30 3.67 67.92 25.75 29.17 2.57
500 GPS 188.96 56.97 26.20 3.44 66.52 24.81 28.79 1.74
500 ICV 190.68 57.17 26.30 3.48 67.80 25.28 28.74 1.92
500 BDP 194.84 49.04 25.89 2.67 71.80 22.06 28.73 1.62

7% 3.23% 500 BCV 117.64 35.78 20.64 2.77 65.76 27.16 33.69 2.20
500 SJ 118.40 36.91 20.67 2.87 65.12 27.68 33.44 2.44
500 GPS 116.48 34.94 20.57 2.69 65.36 26.14 33.62 2.11
500 ICV 117.56 35.21 20.65 2.72 66.32 26.38 33.79 2.23
500 BDP 120.12 30.31 20.33 2.10 67.88 22.75 34.64 2.05

as min(n,m)→ ∞, if Sm is a weakly consistent estimator for σ .

Lemma 2 Suppose that ( √
m(F−1

m (p)−F−1(p))
√

n Xn−µ

σ

)
d→
(

V1
V2

)
(15)

as m→ ∞, for a pair (V1,V2)
′ of random variables. Then

Vn =

√
n
m

√
m(F−1

m (p)−F−1(p))
Sm

= oP(1),

as min(n,m)→ ∞ such that n/m = o(1).

Proof 1 (Theorem 1)
In order to establish the approximations, first notice that the well known Skorohod/Dudley/Wichura
representation theorem allows us to assume that all distributional convergences can be as-
sumed to hold a.s. and that all oP(1) terms are o(1); we leave the details to the reader. In
particular, we may and shall assume that, almost surely,

(X∗1,X
∗
2)
′→ (Z1,Z2) ⇔ X∗1−Z1 = o(1), X∗2−Z2 = o(1), (16)



Table 4: Characteristics of the sampling plans for Model 4
α1 α2 m Type E(n1) sd(n1) c1 sd(c1) E(n2) sd(n2) c2 sd(c2)
3% 7.22% 250 BCV 171.76 49.49 24.52 2.58 59.79 23.18 28.55 1.85

250 SJ 230.81 65.47 27.29 3.28 87.28 29.17 29.45 1.91
250 GPS 173.57 46.82 24.62 2.49 60.70 22.25 28.57 1.74
250 ICV 173.32 44.49 24.61 2.37 60.56 21.12 28.47 1.71
250 BDP 251.94 80.19 26.98 3.67 96.91 34.33 29.63 2.04

7% 3.23% 250 BCV 105.94 30.47 19.26 2.03 58.85 24.02 33.12 2.37
250 SJ 142.30 40.30 21.43 2.57 87.94 32.09 33.85 2.33
250 GPS 107.05 28.84 19.33 1.96 59.57 22.68 33.32 2.63
250 ICV 106.91 27.38 19.33 1.86 59.49 21.82 33.39 2.43
250 BDP 155.31 49.36 21.19 2.88 100.03 39.10 33.95 2.47

3% 7.22% 500 BCV 231.72 52.48 27.43 2.58 88.00 23.35 29.27 1.61
500 SJ 254.06 55.76 28.41 2.72 97.89 24.41 29.85 1.72
500 GPS 209.60 43.00 26.43 2.20 78.13 19.35 28.69 1.36
500 ICV 224.87 49.94 27.13 2.48 84.83 22.18 29.07 1.52
500 BDP 295.24 72.06 29.34 3.10 115.42 30.61 30.47 2.01

7% 3.23% 500 BCV 142.85 32.31 21.54 2.02 88.49 26.36 34.24 2.23
500 SJ 156.60 34.33 22.31 2.13 99.64 27.51 33.92 2.13
500 GPS 129.24 26.48 20.76 1.73 77.04 21.69 34.58 2.21
500 ICV 138.64 30.75 21.30 1.95 84.79 25.11 34.38 2.25
500 BDP 181.98 44.37 23.04 2.43 120.50 35.80 33.86 2.09

as min(n1,n2) → ∞, where (Z1,Z2) are i.i.d standard normal random variables. Let us
consider the probability q = P(Tn1 > c1,Tn1 + Tn2 > c2). As shown in detail below in the
proof of Theorem 2 for the more involved case of dependent sampling, we have the asymptotic
expansions (

Tn1
Tn2

)
=

(
X∗1
X∗2

)
−
( √

n1G−1
m (p)√

n2G−1
m (p)

)
+oP(1),

as min(n1,n2)→ ∞ with n1/n2 → ∞ and max(n1,n2)/m = o(1), and both coordinates are
independent given G−1

m (p). Combing these expansions with (16), we obtain, by plugging in
the above expansions and (Z1,Z2) for (X∗1,X

∗
2),

q = P(X∗1−
√

n1G−1
m (p)+o(1)> c1,X

∗
1 +X∗2− (

√
n1 +
√

n2)G−1
m (p)+o(1)> c2)

= P(Z1−
√

n1G−1
m (p)+o(1)> c1,Z1 +Z2− (

√
n1 +
√

n2)G−1
m (p)+o(1)> c2)

Conditioning on Z2 = z2 and X01, . . . ,X0m leads to the expression∫
P(z > c1 +

√
n1G−1

m (p)+o(1),Z2 > c2− z+(
√

n1 +
√

n2)G−1
m (p)+o(1))dΦ(z)



for q. Using E(1A1B) = 1AE(1B), if A is non-random with respect to P, we obtain

q =
∫

∞

c1+
√

n1G−1
m (p)+o(1)

[1−Φ(c2− z+(
√

n1 +
√

n2)G−1
m (p)+o(1))]dΦ(z)+o(1)

=
∫

∞

c1+
√

n1G−1
m (p)+o(1)

[1−Φ(c2− z+(
√

n1 +
√

n2)G−1
m (p))]dΦ(z)+o(1),

where we used the continuity of the integral. Further, the o(1) term in the integrand can
be dropped by virtue of the Lipschitz continuity of Φ. Combing the above results with the
approximation P(Tn1 > c1) = 1−Φ(c1 +

√
n1G−1

m (p))+o(1), establishes the result. 2

We are now in a position to show Theorem 2. If X01, . . . ,X0m and X11, . . . ,X1n1 are in-
dependent, then (15) follows easily. Otherwise, Assumption Q’ ensures the validity of the
joint asymptotic normality for independent as well as a large class of dependent sampling
schemes.

Proof 2 (Theorem 2)
Recall that E(X i) = µ and Var(X i) = σ/ni, i = 1,2. We may closely follow the arguments
given in Meisen et al. (2012), since we have

Tni =
√

ni
X i− τ

Sm
=
√

ni
X i−µ

σ
+Rni +

√
ni

µ− τ

σ
+Vni,

where

Rni =
√

ni
Xn−µ

σ

σ −Sm

Sm
= oP(1),

Vni =
√

ni
µ− τ

σ

(
σ

Sm
−1
)
= oP(1),

as min(ni,m)→ ∞, by virtue of Lemma 1, since
√

m(Sm−σ) is asymptotically normal (by
an application of the ∆-method, if the fourth moment is finite, and ni/m = o(1), also see
Steland and Zähle (2009). Thus, it remains to consider

√
ni

µ−F−1(p)
σ

=−
√

niG−1(p) =
√

ni

m
√

m[G−1
m (p)−G−1(p)]−

√
niG−1

m (p),

where, by virtue of Assumption Q, the first term is oP(1), if min(m,ni)→∞ and ni/m = o(1).
This shows the first assertion which is relevant when a quantile estimator of the standard-
ized observations is available. Recall that µ0 = µ +∆ = E(X0) and σ2

0 = Var(X0) = σ2.
If a quantile estimator F−1

m for the quantile function F−1
0 (p) = µ0 +σ0G−1(p) of the addi-

tional sample taken at time t0 is available, one proceeds as follows. Noting that µ−F−1(p)
σ

=

G−1(p) = µ0−F−1
0 (p)

σ0
, we have

√
ni

µ−F−1(p)
σ

=

√
ni

m

√
m[F−1

m (p)−F−1
0 (p)]

σ0
−
√

ni
F−1

m (p)−X0

Sm

−
√

ni
F−1

m (p)−X0

Sm

(
Sm

σ0
−1
)
+
√

m
µ0−X0

σ0

√
ni

m
.



In this decomposition at the right side the first, third and fourth term are oP(1), as min(ni,m)→
∞ with ni/m = o(1), i = 1,2. Notice that the fourth term is o(1), since

√
m(X0−µ0)/σ0

d→ N(0,1),

if X01, . . . ,X0m are i.i.d. ∼ F((•−µ0)/σ0) or as a consequence of Assumption Q’. Thus,

√
ni

µ−F−1(p)
σ

=
√

niG−1
m (p)+oP(1),

where now G−1
m (p) = F−1

m (p)−X0
Sm

is an estimator of the quantile function G−1(p) of the stan-
dardized observations, see Remark 1. 2

Proof 3 (Proposition 2)
We consider the case n1 < n2. W.l.o.g. we can assume that X21, . . . ,X2n1 are the time t2 mea-
surements from those n1 items (modules) already drawn at time t1, and X2,n1+1, . . . ,X2n2 are
n2−n1 measurements taken from newly selected items from the lot. By virtue of the Cramér-
Wold device, to prove the proposition, it suffices to show that for all constants d1,d2 ∈R with
(d1,d2) 6= (0,0)

d1X∗1 +d2X∗2
d→

n→∞
N(0,d2

1 +d2
2 +2d1d2

√
λρ
′),

since E(d1X∗1 +d2X∗2) = 0 and

Var(d1X∗1 +d2X∗2) = d2
1 +d2

2 +2d1d2

√
n1

n2
ρ
′.

Write d1X∗1 +d2X∗2 = An +Bn, where

An =
1√
n

n1

∑
j=1

[
d1

X1 j−µ1

σ1
+d2

√
n1

n2

X2 j−µ1

σ1

]
,

Bn =
d2√
n2

√
n2−n1

1√
n2−n1

n2

∑
j=n1+1

X2 j−µ2

σ2
.

The summands of An form an array of row-wise independent random variables ξn1, j,1≤ j≤
n1,n1 ≥ 1, with mean zero and variance

Var(ξn1, j) = d2
1 +d2

2
n1

n2
+2d1d2

√
n1

n2
ρ
′→ d2

1 +d2
2λ +2d1d2

√
λρ
′,

as n1→ ∞. Further, it is easy to verify that Bn
d→ N(0,d2

2(1−λ )), as n1→ ∞. By indepen-
dence of An and Bn, we obtain(

An

Bn

)
d→ N

((
0
0

)
,

(
d2

1 +d2
2λ +2d1d2

√
λρ ′ 0

0 d2
2(1−λ )

))
,

as n1→ ∞. Now the continuous mapping theorem entails

An +Bn
d→ N(0,σ2

AB),

as n1 → ∞, where σ2
AB = d2

1 + d2
2λ + 2d1d2

√
λρ ′+ d2

2(1− λ ) = d2
1 + d2

2λ + 2d1d2
√

λρ ′,
which establishes the assertion. 2



Proof 4 (Theorem 3)
The proof goes along the lines of the proof for the independent case. Again we may and
shall assume that the distributional convergence is a.s. and oP(1) are o(1) a.s. Therefore,(
X∗1,X

∗
2
) a.s.→ (Z1,Z2) , as min(n1,n2)→ ∞. Here (Z1,Z2) is a bivariate random vector that is

jointly normal with mean 0, unit variances and correlation ρ . The probability q = P(Tn1 >
c1,Tn1 +Tn2 > c2) can now be calculated as follows. We have

q = P(X∗1−
√

n1G−1
m (p)+o(1)> c1,X

∗
1 +X∗2− (

√
n1 +
√

n2)G−1
m (p)+o(1)> c2)

= P(Z1 > c1 +
√

n1G−1
m (p)+o(1),Z2 > c2− z+(

√
n1 +
√

n2)G−1
m (p)+o(1))

=
∫

1(z > c1 +
√

n1G−1
m (p)+o(1))

P(Z2 > c2− z+(
√

n1 +
√

n2)G−1
m (p)+o(1)|Z1 = z)dΦ(z)+o(1).

However, now we have to take into account that the conditional law of Z2 given Z1 = z is a
normal distribution that depends on z, namely with mean ρz and variance 1−ρ2. Therefore,
we may conclude that, up to an o(1) term,

q =
1√
2π

∫
∞

c1+
√

n1G−1
m (p)

[
1−Φ

(
c− z+(

√
n1 +
√

n2)G−1
m (p)−ρz√

1−ρ2

)]
e−z2/2 dz.

The unknown correlation parameter ρ may be replaced by its consistent estimator ρ̂ , since
the integrand is Lipschitz continuous, if |ρ| ≤ ρ < 1. Indeed, observing that

d
dρ

Φ

(
c− z+(

√
n1 +
√

n2)G−1
m (p)−ρz√

1−ρ2

)

= ϕ(0,1)

(
c− z+(

√
n1 +
√

n2)G−1
m (p)−ρz√

1−ρ2

)

· −z√
1−ρ2

+ρ
c− z+(

√
n1 +
√

n2)G−1
m (p)−ρ2

(
√

1−ρ2)3
,

where ϕ(0,1) denotes the density of the N(0,1)-distribution, we can find 0 < c < ∞, such that
the above expression is not larger than c|z|, as a function of z. Hence, replacing ρ by its
estimator ρ̂n results in an error term that can be bounded by (2π)−1c

∫
|z|e−z2/2 dz|ρ̂n−ρ|=

oP(1). Putting things together, we arrive at the assertion of the theorem. 2
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